ﻻ يوجد ملخص باللغة العربية
We study the single-impurity Anderson model out of equilibrium under the influence of a bias voltage $phi$ and a magnetic field $B$. We investigate the interplay between the shift ($omega_B$) of the Kondo peak in the spin-resolved density of states (DOS) and the one ($phi_B$) of the conductance anomaly. In agreement with experiments and previous theoretical calculations we find that, while the latter displays a rather linear behavior with an almost constant slope as a function of $B$ down to the Kondo scale, the DOS shift first features a slower increase reaching the same behavior as $phi_B$ only for $|g| mu_B B gg k_B T_K$. Our auxiliary master equation approach yields highly accurate nonequilibrium results for the DOS and for the conductance all the way from within the Kondo up to the charge fluctuation regime, showing excellent agreement with a recently introduced scheme based on a combination of numerical renormalization group with time-dependent density matrix renormalization group.
We study the possibility to observe the two channel Kondo physics in multiple quantum dot heterostructures in the presence of magnetic field. We show that a fine tuning of the coupling parameters of the system and an external magnetic field may stabi
We investigate the many-body effects of a magnetic adatom in ferromagnetic graphene by using the numerical renormalization group method. The nontrivial band dispersion of ferromagnetic graphene gives rise to interesting Kondo physics different from t
We study equilibrium and nonequilibrium properties of the single-impurity Anderson model with a power-law pseudogap in the density of states. In equilibrium, the model is known to display a quantum phase transition from a generalized Kondo to a local
The effect of magnetic impurities on the ballistic conductance of nanocontacts is, as suggested in recent work, amenable to ab initio study cite{naturemat}. Our method proceeds via a conventional density functional calculation of spin and symmetry de
We calculate the conductance through a single quantum dot coupled to metallic leads, modeled by the spin 1/2 Anderson model. We adopt the finite-U extension of the noncrossing approximation method. Our results are in good agreement with exact numeric