ترغب بنشر مسار تعليمي؟ اضغط هنا

36 - Deepak Dhar 2015
We consider a model of fragmentation of sheet by cracks that move with a velocity in preferred direction, but undergo random transverse displacements as they move. There is a non-zero probability of crack-splitting, and the split cracks move independ ently. If two cracks meet, they merge, and move as a single crack. In the steady state, there is non-zero density of cracks, and the sheet left behind by the moving cracks is broken into a large number of fragments of different sizes. The evolution operator for this model reduces to the Hamiltonian of quantum XY spin chain, which is exactly integrable. This allows us to determine the steady state, and also the distribution of sizes of fragments.
111 - Deepak Dhar 2013
This is a light-hearted take at the the second law of thermodynamics.
We consider the spherical model on a spider-web graph. This graph is effectively infinite-dimensional, similar to the Bethe lattice, but has loops. We show that these lead to non-trivial corrections to the simple mean-field behavior. We first determi ne all normal modes of the coupled springs problem on this graph, using its large symmetry group. In the thermodynamic limit, the spectrum is a set of $delta$-functions, and all the modes are localized. The fractional number of modes with frequency less than $omega$ varies as $exp (-C/omega)$ for $omega$ tending to zero, where $C$ is a constant. For an unbiased random walk on the vertices of this graph, this implies that the probability of return to the origin at time $t$ varies as $exp(- C t^{1/3})$, for large $t$, where $C$ is a constant. For the spherical model, we show that while the critical exponents take the values expected from the mean-field theory, the free-energy per site at temperature $T$, near and above the critical temperature $T_c$, also has an essential singularity of the type $exp[ -K {(T - T_c)}^{-1/2}]$.
We study a variation of the minority game. There are N agents. Each has to choose between one of two alternatives everyday, and there is reward to each member of the smaller group. The agents cannot communicate with each other, but try to guess the c hoice others will make, based only the past history of number of people choosing the two alternatives. We describe a simple probabilistic strategy using which the agents acting independently, can still maximize the average number of people benefitting every day. The strategy leads to a very efficient utilization of resources, and the average deviation from the maximum possible can be made of order $(N^{epsilon})$, for any $epsilon >0$. We also show that a single agent does not expect to gain by not following the strategy.
We investigate the thermodynamic properties of a toy model of glasses: a hard-core lattice gas with nearest neighbor interaction in one dimension. The time-evolution is Markovian, with nearest-neighbor and next-nearest neighbor hoppings, and the tran sition rates are assumed to satisfy detailed balance condition, but the system is non-ergodic below a glass temperature. Below this temperature, the system is in restricted thermal equilibrium, where both the number of sectors, and the number of accessible states within a sector grow exponentially with the size of the system. Using partition functions that sum only over dynamically accessible states within a sector, and then taking a quenched average over the sectors, we determine the exact equation of state of this system.
42 - Deepak Dhar 2009
This is a written version of a popular science talk for school children given on Indias National Science Day 2009 at Mumbai. I discuss what distinguishes solids, liquids and gases from each other. I discuss briefly granular matter that in some ways behave like solids, and in other ways like liquids.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا