ترغب بنشر مسار تعليمي؟ اضغط هنا

110 - A.S. Sefat , D.J. Singh , R. Jin 2008
We report synthesis and single crystal measurements of magnetic, transport and thermal properties of single crystalline BaCo$_2$As$_2$ as well as first principles calculations of the electronic structure and magnetic behavior. These results show that BaCo$_2$As$_2$ is a highly renormalized paramagnet in proximity to a quantum critical point, presumably of ferromagnetic character and that BaFeNiAs$_2$ behaves similarly. These results are discussed in relation to the properties of Ba(Fe,Co)$_2$As$_2$ and Ba(Fe,Ni)$_2$As$_2$, which are superconducting for low Co and Ni concentrations.
We investigate the electronic and other properties of the hypothetical compound LiFeSb in relation to superconducting LiFeAs and FeSe using density functional calculations. The results show that LiFeSb in the LiFeAs structure would be dynamically sta ble in the sense of having no unstable phonon modes, and would have very similar electronic and magnetic properties to the layered Fe based superconductors. Importantly, a very similar structure for the Fermi surface and a spin density wave related to but stronger than that in the corresponding As compound is found. These results are indicative of possible superconductivity analogous to the Fe-As based compounds if the spin density wave can be suppressed by doping or other means. Prospects for synthesizing this material in pure form or in solid solution with FeTe are discussed.
The electronic and magnetic properties of the excess Fe in iron telluride Fe$_{(1+x)}$Te are investigated by density functional calculations. We find that the excess Fe occurs with valence near Fe$^{+}$, and therefore provides electron doping with ap proximately one carrier per Fe, and furthermore that the excess Fe is strongly magnetic. Thus it will provide local moments that interact with the plane Fe magnetism, and these are expected to persist in phases where the magnetism of the planes is destroyed for example by pressure or doping. These results are discussed in the context of superconductivity.
77 - D.J. Singh , M.H. Du , L. Zhang 2008
The layered iron superconductors are discussed using electronic structure calculations. The four families of compounds discovered so far, including Fe(Se,Te) have closely related electronic structures. The Fermi surface consists of disconnected hole and electron cylinders and additional hole sections that depend on the specific material. This places the materials in proximity to itinerant magnetism, both due to the high density of states and due to nesting. Comparison of density functional results and experiment provides strong evidence for itinerant spin fluctuations, which are discussed in relation to superconductivity. It is proposed that the intermediate phase between the structural transition and the SDW transition in the oxy-pnictides is a nematic phase.
65 - D.J. Singh 2008
We report density functional calculations of the electronic structure and Fermi surface of the BaFe$_2$As$_2$ and LiFeAs phases including doping via the virtual crystal approximation. The results show that contrary to a rigid band picture, the densit y of states at the Fermi energy is only weakly doping dependent and that the main effect of doping is a change in the relative sizes of the electron and hole Fermi surfaces as required by Luttingers theory. This is a consequence of a change in As height with doping, in particular a shift of As towards Fe as holes are introduced in the Fe plane, as might be expected from simple ionic considerations. The main effect of doping is therefore a reduction in the degree of nesting of the Fermi surface. This provides a framework for understanding the approximate electron-hole symmetry in the phase diagrams of the Fe-As based superconductors.
We report first principles calculations of the phonon dispersions of PbTe both for its observed structure and under compression. At the experimental lattice parameter we find a near instability of the optic branch at the zone center, in accord with e xperimental observations.This hardens quickly towards the zone boundary. There is also a very strong volume dependence of this mode, which is rapidly driven away from an instability by compression. These results are discussed inrelation to the thermal conductivity of the material.
72 - A. Subedi , D.J. Singh , M.H. Du 2008
We report first principles calculations of the electronic structure, phonon dispersions and electron phonon coupling of LaNiPO. These calculations show that this material can be explained as a conventional electron phonon superconductor in contrast to the FeAs based high temperature superconductors.
154 - D.J. Singh , M.H. Du 2008
Density functional studies of 26K superconducting LaFeAs(O,F) are reported. We find a low carrier density, high density of states, $N(E_F)$ and modest phonon frequencies relative to $T_c$. The high $N(E_F)$ leads to proximity to itinerant magnetism, with competing ferromagnetic and antiferromagnetic fluctuations and the balance between these controlled by doping level. Thus LaFeAs(O,F) is in a unique class of high $T_c$ superconductors: high $N(E_F)$ ionic metals near magnetism.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا