ﻻ يوجد ملخص باللغة العربية
We report first principles calculations of the phonon dispersions of PbTe both for its observed structure and under compression. At the experimental lattice parameter we find a near instability of the optic branch at the zone center, in accord with experimental observations.This hardens quickly towards the zone boundary. There is also a very strong volume dependence of this mode, which is rapidly driven away from an instability by compression. These results are discussed inrelation to the thermal conductivity of the material.
The interaction between electrons and lattice vibrations determines key physical properties of materials, including their electrical and heat transport, excited electron dynamics, phase transitions, and superconductivity. We present a new ab initio m
Electron-phonon ($e$-ph) interactions are pervasive in condensed matter, governing phenomena such as transport, superconductivity, charge-density waves, polarons and metal-insulator transitions. First-principles approaches enable accurate calculation
Understanding the microscopic processes affecting the bulk thermal conductivity is crucial to develop more efficient thermoelectric materials. PbTe is currently one of the leading thermoelectric materials, largely thanks to its low thermal conductivi
We present a scheme for the improved description of the long-range interatomic force constants in a more accurate way than the procedure which is commonly used within plane-wave based density-functional perturbation-theory calculations. Our scheme is
We present a comprehensive ab initio study of structural, electronic, lattice dynamical and electron-phonon coupling properties of the Bi(111) surface within density functional perturbation theory. Relativistic corrections due to spin-orbit coupling