ﻻ يوجد ملخص باللغة العربية
The electronic and magnetic properties of the excess Fe in iron telluride Fe$_{(1+x)}$Te are investigated by density functional calculations. We find that the excess Fe occurs with valence near Fe$^{+}$, and therefore provides electron doping with approximately one carrier per Fe, and furthermore that the excess Fe is strongly magnetic. Thus it will provide local moments that interact with the plane Fe magnetism, and these are expected to persist in phases where the magnetism of the planes is destroyed for example by pressure or doping. These results are discussed in the context of superconductivity.
Neutron scattering has played a significant role in characterizing magnetic and structural correlations in Fe$_{1+y}$Te$_{1-x}$Se$_x$ and their connections with superconductivity. Here we review several key aspects of the physics of iron chalcogenide
Single crystals of Fe(1+x)Te(1-y)Se(y) have been grown with a controlled Fe excess and Se doping, and the crystal structure has been refined for various compositions. The systematic investigation of magnetic and superconducting properties as a functi
We study the electronic properties of the $textrm{Fe}textrm{Se}_{1-x}textrm{Te}_x$ system ($x=0$, 0.25, 0.5, 0.75, and 1) from the perspective of X-ray spectroscopy and density functional theory (DFT). The analysis performed on the density of states
We report a systematic study of the superconducting (SC) and normal-state anisotropy of Fe$_{1+y}$Te$_{0.6}$Se$_{0.4}$ single crystals with controlled amounts of excess Fe ($y$ = 0, 0.07, and 0.14). The SC state anisotropy $gamma_{H}$ was obtained by
Inclusion of correlation effects affects quantitatively the agreement with experiment as far as the value of energy shift and the level of doping is concerned, and our original statement that nesting at ($pi$,0) can be responsible for magnetic behavior of FeTe is hereby reinstated.