ترغب بنشر مسار تعليمي؟ اضغط هنا

Renormalized behavior and proximity to a magnetic quantum critical point in BaCo$_2$As$_2$

111   0   0.0 ( 0 )
 نشر من قبل David Singh
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report synthesis and single crystal measurements of magnetic, transport and thermal properties of single crystalline BaCo$_2$As$_2$ as well as first principles calculations of the electronic structure and magnetic behavior. These results show that BaCo$_2$As$_2$ is a highly renormalized paramagnet in proximity to a quantum critical point, presumably of ferromagnetic character and that BaFeNiAs$_2$ behaves similarly. These results are discussed in relation to the properties of Ba(Fe,Co)$_2$As$_2$ and Ba(Fe,Ni)$_2$As$_2$, which are superconducting for low Co and Ni concentrations.

قيم البحث

اقرأ أيضاً

103 - Gang Xu , Haijun Zhang , Xi Dai 2008
We show, from first-principles calculations, that the hole-doped side of FeAs-based compounds is different from its electron-doped counterparts. The electron side is characterized as Fermi surface nesting, and SDW-to-NM quantum critical point (QCP) i s realized by doping. For the hole-doped side, on the other hand, orbital-selective partial orbital ordering develops together with checkboard antiferromagnetic (AF) ordering without lattice distortion. A unique SDW-to-AF QCP is achieved, and $J_2$=$J_1/2$ criteria (in the approximate $J_1&J_2$ model) is satisfied. The observed superconductivity is located in the vicinity of QCP for both sides.
104 - V. Grinenko , K. Iida , F. Kurth 2017
A quantum critical point (QCP) is currently being conjectured for the BaFe$_2$(As$_{1-x}$P$_x$)$_2$ system at the critical value $x_{rm c} approx$ 0.3. In the proximity of a QCP, all thermodynamic and transport properties are expected to scale with a single characteristic energy, given by the quantum fluctuations. Such an universal behavior has not, however, been found in the superconducting upper critical field $H_{rm c2}$. Here we report $H_{rm c2}$-data for epitaxial thin films extracted from the electrical resistance measured in very high magnetic fields up to 67 Tesla. Using a multi-band analysis we find that $H_{rm c2}$ is sensitive to the QCP, implying a significant charge carrier effective mass enhancement at the doping-induced QCP that is essentially band-dependent. Our results point to two qualitatively different groups of electrons in BaFe$_2$(As$_{1-x}$P$_x$)$_2$. The first one (possibly associated to hot spots or whole Fermi sheets) has a strong mass enhancement at the QCP, and the second one is insensitive to the QCP. The observed duality could also be present in many other quantum critical systems.
A nematic transition preceding a long-range spin density wave antiferromagnetic phase is a common feature of many Fe based superconductors. However, in the FeSe system with a nematic transition at $T_{rm s} approx$ 90 K no evidence for long-range sta tic magnetism down to very low temperature was found. The lack of magnetism is a challenge for the theoretical description of FeSe. Here, we investigated high-quality single crystals of FeSe using high-field (up to 9.5 Tesla) muon spin rotation ($mu$SR) measurements. The $mu$SR Knight shift and the bulk susceptibility linearly scale at high temperatures but deviate from this behavior around $T^{*} sim 10$ K, where the Knight shift exhibits a kink. This behavior hints to an essential change of the electronic and/or magnetic properties crossing the region near $T^{*}$. In the temperature range $T_{rm s} gtrsim T gtrsim T^{*}$ the muon spin depolarization rate follows a critical behavior $Lambda propto T^{-0.4}$. The observed non-Fermi liquid behavior with a cutoff at $T^{*}$ indicates that FeSe is in the vicinity to a antiferromagnetic quantum critical point. Our analysis is suggestive for $T^{*}$ triggered by the Lifshitz transition.
Superconductivity in noncentrosymmetric LaNiC$_2$ is expected to be induced by electron--phonon interactions due to its lack of magnetic instabilities. The non-Bardeen-Cooper-Schrieffer (BCS) behaviors found in this material call into question the lo ng-standing idea that relates unconventional superconductivity with magnetic interactions. Here we report magnetic penetration-depth measurements in a high-purity single crystal of LaNiC$_2$ at pressures up to 2.5 GPa and temperatures down to 0.04 K. At ambient pressure and below 0.5$T_c$ the penetration depth goes as $T^4$ for the in-plane and $T^2$ for the out-of-plane component, firmly implying the existence of point nodes in the energy gap and the unconventional character of this superconductor. The present study also provides first evidence of magnetism in LaNiC$_2$ by unraveling a pressure-induced antiferromagnetic phase inside the superconducting state at temperatures below 0.5 K, with a quantum critical point around ambient pressure. The results presented here maintain a solid base for the notion that unconventional superconductivity only arises near magnetic order or fluctuations.
Neutron diffraction measurements have been carried out to investigate the magnetic form factor of the parent SrFe2As2 system of the iron-based superconductors. The general feature is that the form factor is approximately isotropic in wave vector, ind icating that multiple d-orbitals of the iron atoms are occupied as expected based on band theory. Inversion of the diffraction data suggests that there is some elongation of the spin density toward the As atoms. We have also extended the diffraction measurements to investigate a possible jump in the c-axis lattice parameter at the structural phase transition, but find no detectable change within the experimental uncertainties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا