ترغب بنشر مسار تعليمي؟ اضغط هنا

We introduce a system with one or two amplified nonlinear sites (hot spots, HSs) embedded into a two-dimensional linear lossy lattice. The system describes an array of evanescently coupled optical or plasmonic waveguides, with gain applied at selecte d HS cores. The subject of the analysis is discrete solitons pinned to the HSs. The shape of the localized modes is found in quasi-analytical and numerical forms, using a truncated lattice for the analytical consideration. Stability eigenvalues are computed numerically, and the results are supplemented by direct numerical simulations. In the case of self-focusing nonlinearity, the modes pinned to a single HS are stable or unstable when the nonlinearity includes the cubic loss or gain, respectively. If the nonlinearity is self-defocusing, the unsaturated cubic gain acting at the HS supports stable modes in a small parametric area, while weak cubic loss gives rise to a bistability of the discrete solitons. Symmetric and antisymmetric modes pinned to a symmetric set of two HSs are considered too.
189 - Or Maor , Nir Dror , 2013
We introduce a one-dimensional model of a cavity with the Kerr nonlinearity and saturated gain, designed so as to keep solitons in the state of shuttle motion. The solitons are always unstable in the cavity bounded by the usual potential barriers, du e to accumulation of noise generated by the linear gain. Complete stabilization of the shuttling soliton is achieved if the linear barrier potentials are replaced by nonlinear ones, which trap the soliton, being transparent to the radiation. The removal of the noise from the cavity is additionally facilitated by an external ramp potential. The stable dynamical regimes are found numerically, and their basic properties are explained analytically.
We introduce a discrete lossy system, into which a double hot spot (HS) is inserted, i.e., two mutually symmetric sites carrying linear gain and cubic nonlinearity. The system can be implemented as an array of optical or plasmonic waveguides, with a pair of amplified nonlinear cores embedded into it. We focus on the case of the self-defocusing nonlinearity and cubic losses acting at the HSs. Symmetric localized modes pinned to the double HS are constructed in an implicit analytical form, which is done separately for the cases of odd and even numbers of intermediate sites between the HSs. In the former case, some stationary solutions feature a W-like shape, with a low peak at the central site, added to tall peaks at the positions of the embedded HSs. The special case of two adjacent HSs is considered too. Stability of the solution families against small perturbations is investigated in a numerical form, which reveals stable and unstable subfamilies. The instability of symmetric modes accounting for by an isolated positive eigenvalue leads to their spontaneous transformation into co-existing stable antisymmetric modes, while the instability represented by a pair of complex-conjugate eigenvalues gives rise to persistent breathers.
We propose a model of a nonlinear double-well potential (NDWP), alias a double-well pseudopotential, with the objective to study an alternative implementation of the spontaneous symmetry breaking (SSB) in Bose-Einstein condensates (BECs) and optical media, under the action of a potential with two symmetric minima. In the limit case when the NDWP structure is induced by the local nonlinearity coefficient represented by a set of two delta-functions, a fully analytical solution is obtained for symmetric, antisymmetric and asymmetric states. In this solvable model, the SSB bifurcation has a fully subcritical character. Numerical analysis, based on both direct simulations and computation of stability eigenvalues, demonstrates that, while the symmetric states are stable up to the SSB bifurcation point, both symmetric and emerging asymmetric states, as well as all antisymmetric ones, are unstable in the model with the delta-functions. In the general model with a finite width of the nonlinear-potential wells, the asymmetric states quickly become stable, simultaneously with the switch of the SSB bifurcation from the subcritical to supercritical type. Antisymmetric solutions may also get stabilized in the NDWP structure of the general type, which gives rise to a bistability between them and asymmetric states. The symmetric states require a finite norm for their existence, an explanation to which is given. A full diagram for the existence and stability of the trapped states in the model is produced. Experimental observation of the predicted effects should be possible in BEC formed by several hundred atoms.
We report results of a systematic analysis of spatial solitons in the model of 1D photonic crystals, built as a periodic lattice of waveguiding channels, of width D, separated by empty channels of width L-D. The system is characterized by its structu ral duty cycle, DC = D/L. In the case of the self-defocusing (SDF) intrinsic nonlinearity in the channels, one can predict new effects caused by competition between the linear trapping potential and the effective nonlinear repulsive one. Several species of solitons are found in the first two finite bandgaps of the SDF model, as well as a family of fundamental solitons in the semi-infinite gap of the system with the self-focusing nonlinearity. At moderate values of DC (such as 0.50), both fundamental and higher-order solitons populating the second bandgap of the SDF model suffer destabilization with the increase of the total power. Passing the destabilization point, the solitons assume a flat-top shape, while the shape of unstable solitons gets inverted, with local maxima appearing in empty layers. In the model with narrow channels (around DC =0.25), fundamental and higher-order solitons exist only in the first finite bandgap, where they are stable, despite the fact that they also feature the inverted shape.
The problem of the stability of solitons in second-harmonic-generating media with normal group-velocity dispersion (GVD) in the second-harmonic (SH) field, which is generic to available chi^(2) materials, is revisited. Using an iterative numerical sc heme to construct stationary soliton solutions, and direct simulations to test their stability, we identify a full soliton-stability range in the space of the systems parameters, including the coefficient of the group-velocity-mismatch (GVM). The soliton stability is limited by an abrupt onset of growth of tails in the SH component, the relevant stability region being defined as that in which the energy loss to the tail generation is negligible under experimentally relevant conditions. We demonstrate that the stability domain can be readily expanded with the help of two management techniques (spatially periodic compensation of destabilizing effects) - the dispersion management (DM) and GVM management. In comparison with their counterparts in optical fibers, DM solitons in the chi^(2) medium feature very weak intrinsic oscillations.
We present eight types of spatial optical solitons which are possible in a model of a planar waveguide that includes a dual-channel trapping structure and competing (cubic-quintic) nonlinearity. Among the families of trapped beams are symmetric and a ntisymmetric solitons of broad and narrow types, composite states, built as combinations of broad and narrow beams with identical or opposite signs (unipolar and bipolar states, respectively), and single-sided broad and narrow beams trapped, essentially, in a single channel. The stability of the families is investigated via eigenvalues of small perturbations, and is verified in direct simulations. Three species - narrow symmetric, broad antisymmetric, and unipolar composite states - are unstable to perturbations with real eigenvalues, while the other five families are stable. The unstable states do not decay, but, instead, spontaneously transform themselves into persistent breathers, which, in some cases, demonstrate dynamical symmetry breaking and chaotic internal oscillations. A noteworthy feature is a stability exchange between the broad and narrow antisymmetric states: in the limit when the two channels merge into one, the former species becomes stable, while the latter one loses its stability. Different branches of the stationary states are linked by four bifurcations, which take different forms in the model with the strong and weak inter-channel coupling.
We study vortical states in a Bose-Einstein condensate (BEC) filling a cigar-shaped trap. An effective one-dimensional (1D) nonpolynomial Schroedinger equation (NPSE) is derived in this setting, for the models with both repulsive and attractive inter -atomic interactions. Analytical formulas for the density profiles are obtained from the NPSE in the case of self-repulsion within the Thomas-Fermi approximation, and in the case of the self-attraction as exact solutions (bright solitons). A crucially important ingredient of the analysis is the comparison of these predictions with direct numerical solutions for the vortex states in the underlying 3D Gross-Pitaevskii equation (GPE). The comparison demonstrates that the NPSE provides for a very accurate approximation, in all the cases, including the prediction of the stability of the bright solitons and collapse threshold for them. In addition to the straight cigar-shaped trap, we also consider a torus-shaped configuration. In that case, we find a threshold for the transition from the axially uniform state, with the transverse intrinsic vorticity, to a symmetry-breaking pattern, due to the instability in the self-attractive BEC filling the circular trap.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا