ترغب بنشر مسار تعليمي؟ اضغط هنا

Pinned modes in two-dimensional lossy lattices with local gain and nonlinearity

118   0   0.0 ( 0 )
 نشر من قبل Boris Malomed
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a system with one or two amplified nonlinear sites (hot spots, HSs) embedded into a two-dimensional linear lossy lattice. The system describes an array of evanescently coupled optical or plasmonic waveguides, with gain applied at selected HS cores. The subject of the analysis is discrete solitons pinned to the HSs. The shape of the localized modes is found in quasi-analytical and numerical forms, using a truncated lattice for the analytical consideration. Stability eigenvalues are computed numerically, and the results are supplemented by direct numerical simulations. In the case of self-focusing nonlinearity, the modes pinned to a single HS are stable or unstable when the nonlinearity includes the cubic loss or gain, respectively. If the nonlinearity is self-defocusing, the unsaturated cubic gain acting at the HS supports stable modes in a small parametric area, while weak cubic loss gives rise to a bistability of the discrete solitons. Symmetric and antisymmetric modes pinned to a symmetric set of two HSs are considered too.



قيم البحث

اقرأ أيضاً

We introduce a discrete lossy system, into which a double hot spot (HS) is inserted, i.e., two mutually symmetric sites carrying linear gain and cubic nonlinearity. The system can be implemented as an array of optical or plasmonic waveguides, with a pair of amplified nonlinear cores embedded into it. We focus on the case of the self-defocusing nonlinearity and cubic losses acting at the HSs. Symmetric localized modes pinned to the double HS are constructed in an implicit analytical form, which is done separately for the cases of odd and even numbers of intermediate sites between the HSs. In the former case, some stationary solutions feature a W-like shape, with a low peak at the central site, added to tall peaks at the positions of the embedded HSs. The special case of two adjacent HSs is considered too. Stability of the solution families against small perturbations is investigated in a numerical form, which reveals stable and unstable subfamilies. The instability of symmetric modes accounting for by an isolated positive eigenvalue leads to their spontaneous transformation into co-existing stable antisymmetric modes, while the instability represented by a pair of complex-conjugate eigenvalues gives rise to persistent breathers.
140 - Nir Dror , Boris A. Malomed 2010
It is well known that the two-dimensional (2D) nonlinear Schrodinger equation (NLSE) with the cubic-quintic (CQ) nonlinearity supports a family of stable fundamental solitons, as well as solitary vortices (alias vortex rings), which are stable for su fficiently large values of the norm. We study stationary localized modes in a symmetric linearly coupled system of two such equations, focusing on asymmetric states. The model may describe optical bullets in dual-core nonlinear optical waveguides (including spatiotemporal vortices that were not discussed before), or a Bose-Einstein condensate (BEC) loaded into a dual-pancake trap. Each family of solutions in the single-component model has two different counterparts in the coupled system, one symmetric and one asymmetric. Similarly to the earlier studied coupled 1D system with the CQ nonlinearity, the present model features bifurcation loops, for fundamental and vortex solitons alike: with the increase of the total energy (norm), the symmetric solitons become unstable at a point of the direct bifurcation, which is followed, at larger values of the energy, by the reverse bifurcation restabilizing the symmetric solitons. However, on the contrary to the 1D system, the system may demonstrate a double bistability for the fundamental solitons. The stability of the solitons is investigated via the computation of instability growth rates for small perturbations. Vortex rings, which we study for two values of the spin, s = 1 and 2, may be subject to the azimuthal instability, like in the single-component model. We also develop a quasi-analytical approach to the description of the bifurcations diagrams, based on the variational approximation. Splitting of asymmetric vortices, induced by the azimuthal instability, is studied by means of direct simulations. Interactions between initially quiescent solitons of different types are studied too.
We conduct an extensive study of nonlinear localized modes (NLMs), which are temporally periodic and spatially localized structures, in a two-dimensional array of repelling magnets. In our experiments, we arrange a lattice in a hexagonal configuratio n with a light-mass defect, and we harmonically drive the center of the chain with a tunable excitation frequency, amplitude, and angle. We use a damped, driven variant of a vector Fermi- Pasta-Ulam-Tsingou lattice to model our experimental setup. Despite the idealized nature of the model, we obtain good qualitative agreement between theory and experiments for a variety of dynamical behaviors. We find that the spatial decay is direction-dependent and that drive amplitudes along fundamental displacement axes lead to nonlinear resonant peaks in frequency continuations that are similar to those that occur in one-dimensional damped, driven lattices. However, driving along other directions leads to the creation of asymmetric NLMs that bifurcate from the main solution branch, which consists of symmetric NLMs. When we vary the drive amplitude, we observe such behavior both in our experiments and in our simulations. We also demonstrate that solutions that appear to be time-quasi-periodic bifurcate from the branch of symmetric time-periodic NLMs.
We study experimentally light localization at phase-slip waveguides and at the intersection of phase-slips in a two-dimensional (2D) square photonic lattice. Such system allows to observe a variety of effects, including the existence of spatially loc alized modes for low powers, the generation of strongly localized states in the form of discrete bulk and surface solitons, as well as a crossover between one-dimensional (1D) and 2D localization.
We present eight types of spatial optical solitons which are possible in a model of a planar waveguide that includes a dual-channel trapping structure and competing (cubic-quintic) nonlinearity. Among the families of trapped beams are symmetric and a ntisymmetric solitons of broad and narrow types, composite states, built as combinations of broad and narrow beams with identical or opposite signs (unipolar and bipolar states, respectively), and single-sided broad and narrow beams trapped, essentially, in a single channel. The stability of the families is investigated via eigenvalues of small perturbations, and is verified in direct simulations. Three species - narrow symmetric, broad antisymmetric, and unipolar composite states - are unstable to perturbations with real eigenvalues, while the other five families are stable. The unstable states do not decay, but, instead, spontaneously transform themselves into persistent breathers, which, in some cases, demonstrate dynamical symmetry breaking and chaotic internal oscillations. A noteworthy feature is a stability exchange between the broad and narrow antisymmetric states: in the limit when the two channels merge into one, the former species becomes stable, while the latter one loses its stability. Different branches of the stationary states are linked by four bifurcations, which take different forms in the model with the strong and weak inter-channel coupling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا