ﻻ يوجد ملخص باللغة العربية
We report results of a systematic analysis of spatial solitons in the model of 1D photonic crystals, built as a periodic lattice of waveguiding channels, of width D, separated by empty channels of width L-D. The system is characterized by its structural duty cycle, DC = D/L. In the case of the self-defocusing (SDF) intrinsic nonlinearity in the channels, one can predict new effects caused by competition between the linear trapping potential and the effective nonlinear repulsive one. Several species of solitons are found in the first two finite bandgaps of the SDF model, as well as a family of fundamental solitons in the semi-infinite gap of the system with the self-focusing nonlinearity. At moderate values of DC (such as 0.50), both fundamental and higher-order solitons populating the second bandgap of the SDF model suffer destabilization with the increase of the total power. Passing the destabilization point, the solitons assume a flat-top shape, while the shape of unstable solitons gets inverted, with local maxima appearing in empty layers. In the model with narrow channels (around DC =0.25), fundamental and higher-order solitons exist only in the first finite bandgap, where they are stable, despite the fact that they also feature the inverted shape.
We analyze the existence and stability of two-component vector solitons in nematic liquid crystals for which one of the components carries angular momentum and describes a vortex beam. We demonstrate that the nonlocal, nonlinear response can dramatic
Real photon pairs can be created in a dynamic cavity with periodically modulated refractive index of the constituent media or oscillating boundaries. This effect is called Dynamic Casimir effect (DCE), which represents one of the most amazing predict
The stabilization of one-dimensional solitons by a nonlinear lattice against the critical collapse in the focusing quintic medium is a challenging issue. We demonstrate that this purpose can be achieved by combining a nonlinearlatticeandsaturationoft
Weyl points are the degenerate points in three-dimensional momentum space with nontrivial topological phase, which are usually realized in classical system with structure and symmetry designs. Here we proposed a one-dimensional layer-stacked photonic
Three-dimensional (3D) artificial metacrystals host rich topological phases, such as Weyl points, nodal rings and 3D photonic topological insulators. These topological states enable a wide range of applications, including 3D robust waveguide, one-way