ترغب بنشر مسار تعليمي؟ اضغط هنا

93 - Qing Lin , Bing He , R. Ghobadi 2013
The radiation pressure induced coupling between an optical cavity field and a mechanical oscillator can create entanglement between them. In previous works this entanglement was treated as that of the quantum fluctuations of the cavity and mechanical modes around their classical mean values. Here we provide a fully quantum approach to optomechanical entanglement, which goes beyond the approximation of classical mean motion plus quantum fluctuation, and applies to arbitrary cavity drive. We illustrate the real-time evolution of optomechanical entanglement under drive of arbitrary detuning to show the existence of high, robust and stable entanglement in blue detuned regime, and highlight the quantum noise effects that can cause entanglement sudden death and revival.
57 - Bing He , Yuhang Ren , 2009
We propose a setup that transforms a photon pair in arbitrary rank-four mixed state, which could also be unknown, to a Bell state. The setup involves two linear optical circuits processing the individual photons and a parity gate working with weak cr oss-Kerr nonlinearity. By the photon number resolving detection on one of the output quantum bus or communication beams, the setup will realize a near deterministic transformation to a Bell state for every entangling attempt. With the simple threshold detectors, on the other hand, the system can still reach a considerable success probability of 0.5 per try. The decoherence effect caused by photon absorption losses in the operation is also discussed.
Multi-photon states are widely applied in quantum information technology. By the methods presented in this paper, the structure of a multi-photon state in the form of multiple single photon qubit product can be mapped to a single photon qudit, which could also be in separable product with other photons. This makes the possible manipulation of such multi-photon states in the way of processing single photon states. The optical realization of unknown qubit discrimination [B. He, J. A. Bergou, and Y.-H. Ren, Phys. Rev. A 76, 032301 (2007)] is simplified with the transformation methods. Another application is the construction of quantum logic gates, where the inverse transformations back to the input state spaces are also necessary. We especially show that the modified setups to implement the transformations can realize the deterministic multi-control gates (including Toffoli gate) operating directly on the products of single photon qubits.
63 - Bing He , Yu-Hang Ren , 2009
We present a quantum repeater protocol that generates the elementary segments of entangled photons through the communication of qubus in coherent states. The input photons at the repeater stations can be in arbitrary states to save the local state pr eparation time for the operations. The flexibility of the scheme accelerates the generation of the elementary segments (close to the exact Bell states) to a high rate for practical quantum communications. The entanglement connection to long distances is simplified and sped up, possibly realizing an entangled pair of high quality within the time in the order of that for classical communication between two far-away locations.
377 - Bing He , Janos A. Bergou 2008
We present an optimal scheme to realize the transformations between single copies of two bipartite entangled states without classical communication between the sharing parties. The scheme achieves the upper bound for the success probabilities [PRA 63 , 022301 (2001), PRL 83, 1455 (1999)] of generating maximally entangled states if applied to entanglement concentration. Such strategy also dispenses with the interaction with an ancilla system in the implementation. We also show that classical communications are indispensable in realizing the deterministic transformations of a single bipartite entangled state. With a finite number of identical pairs of two entangled bosons, on the other hand, we can realize the deterministic transformation to any target entangled state of equal or less Schmidt rank through an extension of the scheme.
This paper has been withdrawn by the authors, due a oversimplified decoherence model. It will be substituted by a new work.
99 - Bing He , Janos A. Bergou 2008
The general transformation of the product of coherent states $prod_{i=1}^N|alpha_i>$ to the output state $prod_{i=1}^M|beta_i>$ ($N=M$ or $N eq M$), which is realizable with linear optical circuit, is characterized with a linear map from the vector $ (alpha^{ast}_1,...,alpha^{ast}_N)$ to $(beta^{ast}_1,...,beta^{ast}_M)$. A correspondence between the transformations of a product of coherent states and those of a single photon state is established with such linear maps. It is convenient to apply this linear transformation method to design any linear optical scheme working with coherent states. The examples include message encoding and quantum database searching. The limitation of manipulating entangled coherent states with linear optics is also discussed.
We propose an experimental setup that is capable of unambiguously discriminating any pair of linearly independent single photon polarization qubits, about which we dont have any knowledge except that an extra pair of these unknown states are provided as the reference. This setup, which is constructed with optical CNOT gates, weak cross Kerr non-linearities, Bell state analysers and other linear optical elements, transforms the unknown triple photon input states to the corresponding single photon states to be deterministically processed by linear optics circuit. The optimal discrimination of the unknown states is achieved by this setup.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا