ترغب بنشر مسار تعليمي؟ اضغط هنا

Creation of high-quality long-distance entanglement with flexible resources

65   0   0.0 ( 0 )
 نشر من قبل Bing He
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a quantum repeater protocol that generates the elementary segments of entangled photons through the communication of qubus in coherent states. The input photons at the repeater stations can be in arbitrary states to save the local state preparation time for the operations. The flexibility of the scheme accelerates the generation of the elementary segments (close to the exact Bell states) to a high rate for practical quantum communications. The entanglement connection to long distances is simplified and sped up, possibly realizing an entangled pair of high quality within the time in the order of that for classical communication between two far-away locations.

قيم البحث

اقرأ أيضاً

We demonstrate the deterministic generation of multipartite entanglement based on scalable methods. Four qubits are encoded in $^{40}$Ca$^+$, stored in a micro-structured segmented Paul trap. These qubits are sequentially entangled by laser-driven pa irwise gate operations. Between these, the qubit register is dynamically reconfigured via ion shuttling operations, where ion crystals are separated and merged, and ions are moved in and out of a fixed laser interaction zone. A sequence consisting of three pairwise entangling gates yields a four-ion GHZ state $vertpsirangle=tfrac{1}{sqrt{2}}left(vert 0000rangle+vert 1111rangleright)$, and full quantum state tomography reveals a Bell state fidelity of 94.4(3)%. We analyze the decoherence of this state and employ dynamic decoupling on the spatially distributed constituents to maintain 69(5)% coherence at a storage time of 1.1~seconds.
This paper has been withdrawn by the authors, due a oversimplified decoherence model. It will be substituted by a new work.
We report the observation of entanglement between a single trapped atom and a single photon at remote locations. The degree of coherence of the entangled atom-photon pair is verified via appropriate local correlation measurements, after communicating the photon via an optical fiber link of 300 m length. In addition we measured the temporal evolution of the atomic density matrix after projecting the atom via a state measurement of the photon onto several well defined spin states. We find that the state of the single atom dephases on a timescale of 150 $mu$s, which represents an important step toward long-distance quantum networking with individual neutral atoms.
Most quantum system with short-ranged interactions show a fast decay of entanglement with the distance. In this Letter, we focus on the peculiarity of some systems to distribute entanglement between distant parties. Even in realistic models, like the spin-1 Heisenberg chain, sizable entanglement is present between arbitrarily distant particles. We show that long distance entanglement appears for values of the microscopic parameters which do not coincide with known quantum critical points, hence signaling a transition detected only by genuine quantum correlations.
We report the first experimental realization of entanglement swapping over large distances in optical fibers. Two photons separated by more than two km of optical fibers are entangled, although they never directly interacted. We use two pairs of time -bin entangled qubits created in spatially separated sources and carried by photons at telecommunication wavelengths. A partial Bell state measurement is performed with one photon from each pair which projects the two remaining photons, formerly independent onto an entangled state. A visibility high enough to violate a Bell inequality is reported, after both photons have each travelled through 1.1 km of optical fiber.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا