ترغب بنشر مسار تعليمي؟ اضغط هنا

Universal entangler with photon pairs in arbitrary states

57   0   0.0 ( 0 )
 نشر من قبل Bing He
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a setup that transforms a photon pair in arbitrary rank-four mixed state, which could also be unknown, to a Bell state. The setup involves two linear optical circuits processing the individual photons and a parity gate working with weak cross-Kerr nonlinearity. By the photon number resolving detection on one of the output quantum bus or communication beams, the setup will realize a near deterministic transformation to a Bell state for every entangling attempt. With the simple threshold detectors, on the other hand, the system can still reach a considerable success probability of 0.5 per try. The decoherence effect caused by photon absorption losses in the operation is also discussed.

قيم البحث

اقرأ أيضاً

Optimal control theory is a powerful tool for improving figures of merit in quantum information tasks. Finding the solution to any optimal control problem via numerical optimization depends crucially on the choice of the optimization functional. Here , we derive a functional that targets the full set of two-qubit perfect entanglers, gates capable of creating a maximally-entangled state out of some initial product state. The functional depends on easily-computable local invariants and uniquely determines when a gate evolves into a perfect entangler. Optimization with our functional is most useful if the two-qubit dynamics allows for the implementation of more than one perfect entangler. We discuss the reachable set of perfect entanglers for a generic Hamiltonian that corresponds to several quantum information platforms of current interest.
The difficulty of an optimization task in quantum information science depends on the proper mathematical expression of the physical target. Here we demonstrate the power of optimization functionals targeting an arbitrary perfect two-qubit entangler, creating a maximally-entangled state out of some initial product state. For two quantum information platforms of current interest, nitrogen vacancy centers in diamond and superconducting Josephson junctions, we show that an arbitrary perfect entangler can be reached faster and with higher fidelity than specific two-qubit gates or local equivalence classes of two-qubit gates. Our results are obtained with two independent optimization approaches, underlining the crucial role of the optimization target.
159 - Lars M. Johansen 2004
The exact conditions on valid pointer states for weak measurements are derived. It is demonstrated that weak measurements can be performed with any pointer state with vanishing probability current density. This condition is found both for weak measur ements of noncommuting observables and for $c$-number observables. In addition, the interaction between pointer and object must be sufficiently weak. There is no restriction on the purity of the pointer state. For example, a thermal pointer state is fully valid.
We introduce a scheme to perform universal quantum computation in quantum cellular automata (QCA) fashion in arbitrary subsystem dimension (not necessarily finite). The scheme is developed over a one spatial dimension $N$-element array, requiring onl y mirror symmetric logical encoding and global pulses. A mechanism using ancillary degrees of freedom for subsystem specific measurement is also presented.
Motivated by very recent experiments, we consider a scenario `a la Bell in which two protagonists test the Clauser-Horne-Shimony-Holt (CHSH) inequality using a photon-pair source based on spontaneous parametric down conversion and imperfect photon de tectors. The conventional wisdom says that (i) if the detectors have unit efficiency, the CHSH violation can reach its maximum quantum value $2sqrt{2}$. To obtain the maximal possible violation, it suffices that the source emits (ii) maximally entangled photon pairs (iii) in two well defined single modes. Through a non-perturabive calculation of non-local correlations, we show that none of these statements are true. By providing the optimal pump parameters, measurement settings and state structure for any detection efficiency and dark count probability, our results give the recipe to close all the loopholes in a Bell test using photon pairs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا