ترغب بنشر مسار تعليمي؟ اضغط هنا

Gamma-ray bursts are the most luminous explosions that we can witness in the Universe. Studying the most extreme cases of these phenomena allows us to constrain the limits for the progenitor models. In this Letter, we study the prompt emission, after glow, and host galaxy of GRB 120624B, one of the brightest GRBs detected by Fermi, to derive the energetics of the event and characterise the host galaxy in which it was produced. Following the high-energy detection we conducted a multi-wavelength follow-up campaign, including near-infrared imaging from HAWKI/VLT, optical from OSIRIS/GTC, X-ray observations from the Chandra X-ray Observatory and at sub-millimetre/millimetre wavelengths from SMA. Optical/nIR spectroscopy was performed with X-shooter/VLT. We detect the X-ray and nIR afterglow of the burst and determine a redshift of z = 2.1974 +/- 0.0002 through the identification of emission lines of [OII], [OIII] and H-alpha from the host galaxy of the GRB. This implies an energy release of Eiso = (3.0+/-0.2)x10^54 erg, amongst the most luminous ever detected. The observations of the afterglow indicate high obscuration with AV > 1.5. The host galaxy is compact, with R1/2 < 1.6 kpc, but luminous, at L ~ 1.5 L* and has a star formation rate of 91 +/- 6 Msol/yr as derived from H-alpha. As other highly obscured GRBs, GRB 120624B is hosted by a luminous galaxy, which we also proof to be compact, with a very intense star formation. It is one of the most luminous host galaxies associated with a GRB, showing that the host galaxies of long GRBs are not always blue dwarf galaxies, as previously thought.
Short duration gamma-ray bursts (SGRBs) are thought to be related to the violent merger of compact objects, such as neutron stars or black holes, which makes them promising sources of gravitational waves. The detection of a kilonova-like signature as sociated to the Swift-detected GRB 130603B has suggested that this event is the result of a compact object merger. Our knowledge on SGRB has been, until now, mostly based on the absence of supernova signatures and the analysis of the host galaxies to which they cannot always be securely associated. Further progress has been significantly hampered by the faintness and rapid fading of their optical counterparts (afterglows), which has so far precluded spectroscopy of such events. Afterglow spectroscopy is the key tool to firmly determine the distance at which the burst was produced, crucial to understand its physics, and study its local environment. Here we present the first spectra of a prototypical SGRB afterglow in which both absorption and emission features are clearly detected. Together with multiwavelength photometry we study the host and environment of GRB 130603B. From these spectra we determine the redshift of the burst to be z = 0.3565+/-0.0002, measure rich dynamics both in absorption and emission, and a substantial line of sight extinction of A_V = 0.86+/-0.15 mag. The GRB was located at the edge of a disrupted arm of a moderately star forming galaxy with near-solar metallicity. Unlike for most long GRBs (LGRBs), N_HX / A_V is consistent with the Galactic ratio, indicating that the explosion site differs from those found in LGRBs. The merger is not associated with the most star-forming region of the galaxy; however, it did occur in a dense region, implying a rapid merger or a low natal kick velocity for the compact object binary.
The extreme brightness of gamma-ray burst (GRB) afterglows and their simple spectral shape make them ideal beacons to study the interstellar medium of their host galaxies through absorption line spectroscopy. Using 69 low-resolution GRB afterglow spe ctra, we conduct a study of the rest-frame equivalent width (EW) distribution of features with an average rest-frame EW larger than 0.5 A. To compare an individual GRB with the sample, we develop EW diagrams as a graphical tool, and we give a catalogue with diagrams for the 69 spectra. We introduce a line strength parameter (LSP) that allows us to quantify the strength of the absorption features as compared to the sample by a single number. Using the distributions of EWs of single-species features, we derive the distribution of column densities by a curve of growth (CoG) fit. We find correlations between the LSP and the extinction of the GRB, the UV brightness of the host galaxies and the neutral hydrogen column density. However, we see no significant evolution of the LSP with the redshift. There is a weak correlation between the ionisation of the absorbers and the energy of the GRB, indicating that, either the GRB event is responsible for part of the ionisation, or that galaxies with high-ionisation media produce more energetic GRBs. Spectral features in GRB spectra are, on average, 2.5 times stronger than those seen in QSO intervening damped Lyman-alpha (DLA) systems and slightly more ionised. In particular we find larger excess in the EW of CIV1549 relative to QSO DLAs, which could be related to an excess of Wolf-Rayet stars in the environments of GRBs. From the CoG fitting we obtain an average number of components in the absorption features of GRBs of 6.00(-1.25,+1.00). The most extreme ionisation ratios in our sample are found for GRBs with low neutral hydrogen column density, which could be related to ionisation by the GRB emission.
GRBs generate an afterglow emission that can be detected from radio to X-rays during days, or even weeks after the initial explosion. The peak of this emission crosses the mm/submm range during the first hours to days, making their study in this rang e crucial for constraining the models. Observations have been limited until now due to the low sensitivity of the observatories in this range. We present observations of 10 GRB afterglows obtained from APEX and SMA, as well as the first detection of a GRB with ALMA, and put them into context with all the observations that have been published until now in the spectral range that will be covered by ALMA. The catalogue of mm/submm observations collected here is the largest to date and is composed of 102 GRBs, of which 88 had afterglow observations, whereas the rest are host galaxy searches. With our programmes, we contributed with data of 11 GRBs and the discovery of 2 submm counterparts. In total, the full sample, including data from the literature, has 22 afterglow detections with redshift ranging from 0.168 to 8.2. GRBs have been detected in mm/submm wavelengths with peak luminosities spanning 2.5 orders of magnitude, the most luminous reaching 10^33erg s^-1 Hz^-1. We observe a correlation between the X-ray brightness at 0.5 days and the mm/submm peak brightness. Finally we give a rough estimate of the distribution of peak flux densities of GRB afterglows, based on the current mm/submm sample. Observations in the mm/submm bands have been shown to be crucial for our understanding of the physics of GRBs, but have until now been limited by the sensitivity of the observatories. With the start of the operations at ALMA, the sensitivity will be increased by more than an order of magnitude. Our estimates predict that, once completed, ALMA will detect up to 98% of the afterglows if observed during the passage of the peak synchrotron emission.
OCTOCAM is a multi-channel imager and spectrograph that has been proposed for the 10.4m GTC telescope. It will use dichroics to split the incoming light to produce simultaneous observations in 8 different bands, ranging from the ultraviolet to the ne ar-infrared. The imaging mode will have a field of view of 2 x 2 in u, g, r, i, z, J, H and Ks bands, whereas the long-slit spectroscopic mode will cover the complete range from 4,000 to 23,000 {AA} with a resolution of 700 - 1,700 (depending on the arm and slit width). An additional mode, using an image slicer, will deliver a spectral resolution of over 3,000. As a further feature, it will use state of the art detectors to reach high readout speeds of the order of tens of milliseconds. In this way, OCTOCAM will be occupying a region of the time resolution - spectral resolution - spectral coverage diagram that is not covered by a single instrument in any other observatory, with an exceptional sensitivity.
Gamma-ray bursts are usually classified through their high-energy emission into short-duration and long-duration bursts, which presumably reflect two different types of progenitors. However, it has been shown on statistical grounds that a third, inte rmediate population is needed in this classification scheme, although an extensive study of the properties of this class has so far not been done. The large amount of follow-up studies generated during the Swift era allows us to have a suficient sample to attempt a study of this third population through the properties of their prompt emission and their afterglows. Our study is focused on a sample of GRBs observed by Swift during its first four years of operation. The sample contains those bursts with measured redshift since this allows us to derive intrinsic properties. Intermediate bursts are less energetic and have dimmer afterglows than long GRBs, especially when considering the X-ray light curves, which are on average one order of magnitude fainter than long bursts. There is a less significant trend in the redshift distribution that places intermediate bursts closer than long bursts. Except for this, intermediate bursts show similar properties to long bursts. In particular, they follow the Epeak vs. Eiso correlation and have, on average, positive spectral lags with a distribution similar to that of long bursts. Like long GRBs, they normally have an associated supernova, although some intermediate bursts have shown no supernova component. This study shows that intermediate bursts are different from short bursts and, in spite of sharing many properties with long bursts, there are some differences between them as well. We suggest that the physical difference between intermediate and long bursts could be that for the first the ejecta are thin shells while for the latter they are thick shells.
Context. X-shooter is the first second-generation instrument to become operative at the ESO Very Large Telescope (VLT). It is a broad-band medium-resolution spectrograph designed with gamma-ray burst (GRB) afterglow spectroscopy as one of its main sc ience drivers. Aims. During the first commissioning night on sky with the instrument fully assembled, X-shooter observed the afterglow of GRB 090313 as a demonstration of the instruments capabilities. Methods. GRB 090313 was observed almost two days after the burst onset, when the object had already faded to R~21.6. Furthermore, the 90% illuminated Moon was just 30 degrees away from the field. In spite of the adverse conditions, we obtained a spectrum that, for the first time in GRB research, covers simultaneously the range from 5700 to 23000 Angstroms. Results. The spectrum shows multiple absorption features at a redshift of 3.3736, the redshift of the GRB. These features are composed of 3 components with different ionisation levels and velocities. Some of the features have never been observed before in a GRB at such a high redshift. Furthermore, we detect two intervening systems at redshifts of 1.8005 and 1.9597. Conclusions. These results demonstrate the potential of X-shooter in the GRB field, as it was capable of observing a GRB down to a magnitude limit that would include 72% of long GRB afterglows 2 hours after the burst onset. Coupled with the rapid response mode available at VLT, allowing reaction times of just a few minutes, X-shooter constitutes an important leap forward on medium resolution spectroscopic studies of GRBs, their host galaxies and intervening systems, probing the early history of the Universe.
On 28 May 2008, the Swift satellite detected the first reactivation of SGR 1627-41 since its discovery in 1998. Following this event we began an observing campaign in near infrared wavelengths to search for a possible counterpart inside the error c ircle of this SGR, which is expected to show flaring activity simultaneous to the high energy flares or at least some variability as compared to the quiescent state. For the follow-up we used the 0.6m REM robotic telescope at La Silla Observatory, which allowed a fast response within 24 hours and, through director discretionary time, the 8.2m Very Large Telescope at Paranal Observatory. There, we observed with NACO to produce high angular resolution imaging with the aid of adaptive optics. These observations represent the fastest near infrared observations after an activation of this SGR and the deepest and highest spatial resolution observations of the Chandra error circle. 5 sources are detected in the immediate vicinity of the most precise X-ray localisation of this source. For 4 of them we do not detect variability, although the X-ray counterpart experimented a significant decay during our observation period. The 5th source is only detected in one epoch, where we have the best image quality, so no variability constrains can be imposed and remains as the only plausible counterpart. We can impose a limit of Ks > 21.6 magnitudes to any other counterpart candidate one week after the onset of the activity. Our adaptive optics imaging, with a resolution of 0.2 provides a reference frame for subsequent studies of future periods of activity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا