ترغب بنشر مسار تعليمي؟ اضغط هنا

OCTOCAM: A fast multichannel imager and spectrograph for the 10.4m GTC

118   0   0.0 ( 0 )
 نشر من قبل Antonio de Ugarte Postigo
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

OCTOCAM is a multi-channel imager and spectrograph that has been proposed for the 10.4m GTC telescope. It will use dichroics to split the incoming light to produce simultaneous observations in 8 different bands, ranging from the ultraviolet to the near-infrared. The imaging mode will have a field of view of 2 x 2 in u, g, r, i, z, J, H and Ks bands, whereas the long-slit spectroscopic mode will cover the complete range from 4,000 to 23,000 {AA} with a resolution of 700 - 1,700 (depending on the arm and slit width). An additional mode, using an image slicer, will deliver a spectral resolution of over 3,000. As a further feature, it will use state of the art detectors to reach high readout speeds of the order of tens of milliseconds. In this way, OCTOCAM will be occupying a region of the time resolution - spectral resolution - spectral coverage diagram that is not covered by a single instrument in any other observatory, with an exceptional sensitivity.

قيم البحث

اقرأ أيضاً

The Gemini Planet Imager (GPI) is a complex optical system designed to directly detect the self-emission of young planets within two arcseconds of their host stars. After suppressing the starlight with an advanced AO system and apodized coronagraph, the dominant residual contamination in the focal plane are speckles from the atmosphere and optical surfaces. Since speckles are diffractive in nature their positions in the field are strongly wavelength dependent, while an actual companion planet will remain at fixed separation. By comparing multiple images at different wavelengths taken simultaneously, we can freeze the speckle pattern and extract the planet light adding an order of magnitude of contrast. To achieve a bandpass of 20%, sufficient to perform speckle suppression, and to observe the entire two arcsecond field of view at diffraction limited sampling, we designed and built an integral field spectrograph with extremely low wavefront error and almost no chromatic aberration. The spectrograph is fully cryogenic and operates in the wavelength range 1 to 2.4 microns with five selectable filters. A prism is used to produce a spectral resolution of 45 in the primary detection band and maintain high throughput. Based on the OSIRIS spectrograph at Keck, we selected to use a lenslet-based spectrograph to achieve an rms wavefront error of approximately 25 nm. Over 36,000 spectra are taken simultaneously and reassembled into image cubes that have roughly 192x192 spatial elements and contain between 11 and 20 spectral channels. The primary dispersion prism can be replaced with a Wollaston prism for dual polarization measurements. The spectrograph also has a pupil-viewing mode for alignment and calibration.
The Mid-infrared ELT Imager and Spectrograph (METIS) will provide the Extremely Large Telescope (ELT) with a unique window to the thermal- and mid-infrared (3 - 13 microns). Its single-conjugate adaptive optics (SCAO) system will enable high contrast imaging and integral field unit (IFU) spectroscopy (R~100,000) at the diffraction limit of the ELT. This article describes the science drivers, conceptual design, observing modes, and expected performance of METIS.
METIS will be among the first generation of scientific instruments on the E-ELT. Focusing on highest angular resolution and high spectral resolution, METIS will provide diffraction limited imaging and coronagraphy from 3-14um over an 20x20 field of v iew, as well as integral field spectroscopy at R ~ 100,000 from 2.9-5.3um. In addition, METIS provides medium-resolution (R ~ 5000) long slit spectroscopy, and polarimetric measurements at N band. While the baseline concept has already been discussed, this paper focuses on the significant developments over the past two years in several areas: The science case has been updated to account for recent progress in the main science areas circum-stellar disks and the formation of planets, exoplanet detection and characterization, Solar system formation, massive stars and clusters, and star formation in external galaxies. We discuss the developments in the adaptive optics (AO) concept for METIS, the telescope interface, and the instrument modelling. Last but not least, we provide an overview of our technology development programs, which ranges from coronagraphic masks, immersed gratings, and cryogenic beam chopper to novel approaches to mirror polishing, background calibration and cryo-cooling. These developments have further enhanced the design and technology readiness of METIS to reliably serve as an early discovery machine on the E-ELT.
We report on the design and performance of the Keck Cosmic Web Imager (KCWI), a general purpose optical integral field spectrograph that has been installed at the Nasmyth port of the 10 m Keck II telescope on Mauna Kea, HI. The novel design provides blue-optimized seeing-limited imaging from 350-560 nm with configurable spectral resolution from 1000 - 20000 in a field of view up to 20x33. Selectable volume phase holographic (VPH) gratings and high performance dielectric, multilayer silver and enhanced aluminum coatings provide end-to-end peak efficiency in excess of 45% while accommodating the future addition of a red channel that will extend wavelength coverage to 1 micron. KCWI takes full advantage of the excellent seeing and dark sky above Mauna Kea with an available nod-and-shuffle observing mode. The instrument is optimized for observations of faint, diffuse objects such as the intergalactic medium or cosmic web. In this paper, a detailed description of the instrument design is provided with measured performance results from the laboratory test program and ten nights of on-sky commissioning during the spring of 2017. The KCWI team is lead by Caltech and JPL (project management, design and implementation) in partnership with the University of California at Santa Cruz (camera optical and mechanical design) and the W. M. Keck Observatory (observatory interfaces).
Aims. GRB 190829A (z = 0.0785), detected by Fermi and Swift with two emission episodes separated by a quiescent gap of ~40 s, was also observed by the H.E.S.S. telescopes at Very-High Energy (VHE). We present the 10.4m GTC observations of the aftergl ow of GRB 190829A and underlying supernova and compare it against a similar GRB 180728A and discuss the implications on underlying physical mechanisms producing these two GRBs. Methods. We present multi-band photometric data along with spectroscopic follow-up observations taken with the 10.4m GTC telescope. Together with the data from the prompt emission, the 10.4m GTC data are used to understand the emission mechanisms and possible progenitor. Results. A detailed analysis of multi-band data of the afterglow demands cooling frequency to pass between the optical and X-ray bands at early epochs and dominant with underlying SN 2019oyw later on. Conclusions. Prompt emission temporal properties of GRB 190829A and GRB 180728A are similar, however the two pulses seem different in the spectral domain. We found that the supernova (SN) 2019oyw associated with GRB 190829A, powered by Ni decay, is of Type Ic-BL and that the spectroscopic/photometric properties of this SN is consistent with those observed for SN 1998bw but evolved comparatively early.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا