ترغب بنشر مسار تعليمي؟ اضغط هنا

Pre-ALMA observations of GRBs in the mm/submm range

77   0   0.0 ( 0 )
 نشر من قبل Antonio de Ugarte Postigo
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

GRBs generate an afterglow emission that can be detected from radio to X-rays during days, or even weeks after the initial explosion. The peak of this emission crosses the mm/submm range during the first hours to days, making their study in this range crucial for constraining the models. Observations have been limited until now due to the low sensitivity of the observatories in this range. We present observations of 10 GRB afterglows obtained from APEX and SMA, as well as the first detection of a GRB with ALMA, and put them into context with all the observations that have been published until now in the spectral range that will be covered by ALMA. The catalogue of mm/submm observations collected here is the largest to date and is composed of 102 GRBs, of which 88 had afterglow observations, whereas the rest are host galaxy searches. With our programmes, we contributed with data of 11 GRBs and the discovery of 2 submm counterparts. In total, the full sample, including data from the literature, has 22 afterglow detections with redshift ranging from 0.168 to 8.2. GRBs have been detected in mm/submm wavelengths with peak luminosities spanning 2.5 orders of magnitude, the most luminous reaching 10^33erg s^-1 Hz^-1. We observe a correlation between the X-ray brightness at 0.5 days and the mm/submm peak brightness. Finally we give a rough estimate of the distribution of peak flux densities of GRB afterglows, based on the current mm/submm sample. Observations in the mm/submm bands have been shown to be crucial for our understanding of the physics of GRBs, but have until now been limited by the sensitivity of the observatories. With the start of the operations at ALMA, the sensitivity will be increased by more than an order of magnitude. Our estimates predict that, once completed, ALMA will detect up to 98% of the afterglows if observed during the passage of the peak synchrotron emission.

قيم البحث

اقرأ أيضاً

52 - Alain Omont 2003
The Atacama Large Millimeter Array (ALMA), a world-wide project (64x12m-dishes operating from 84 to 720 GHz, to be completed by 2011) will represent a jump of almost two orders of magnitude in sensitivity and angular resolution as compared to present millimeter/submillimeter interferometers, and will thus undoubtedly produce a major step in astrophysics. The main objectives will be the origins of galaxies, stars and planets. ALMA will be able to detect dust-enshrouded star-forming galaxies at redshifts z > 10, both in the emission of dust and spectral lines (CO and other species, including C+). It will also explore in detail the physical and chemical processes of star and planet formation hidden away in dusty molecular clouds and protoplanetary disks. In addition, ALMA will allow similar enormous gains in all other fields of mm and submm astronomy, including nearby galaxies, AGN, astrochemistry, circumstellar shells and the solar system.
We present ALMA Band 6 observations (1.3 mm/233 GHz) of Fomalhaut and its debris disc. The observations achieve a sensitivity of 17 $mu$Jy and a resolution of 0.28 arcsec (2.1 au at a distance of 7.66 pc), which are the highest resolution observation s to date of the millimetre grains in Fomalhauts main debris ring. The ring is tightly constrained to $139^{+2}_{-3}$ au with a FWHM of $13pm3$ au, following a Gaussian profile. The millimetre spectral index is constrained to $alpha_{mm} = -2.62pm0.12$. We explore fitting debris disc models in the image plane, as well as fitting models using visibility data directly. The results are compared and the potential advantages/disadvantages of each approach are discussed. The detected central emission is indistinguishable from a point source, with a most probable flux of $0.90pm 0.12$ mJy (including calibration uncertainties). This implies that any inner debris structure, as was inferred from far-Infrared observations, must contribute little to the total central emission. Moreover, the stellar flux is less than 70% of that predicted by extrapolating a black body from the constrained stellar photosphere temperature. This result emphasizes that unresolved inner debris components cannot be fully characterized until the behaviour of the host stars intrinsic stellar emission at millimetre wavelengths is properly understood.
Stars like our Sun form in self-gravitating dense and cold structures within interstellar clouds, called pre-stellar cores. Although much is known about the physical structure of dense clouds just before and soon after the switch-on of a protostar, t he central few thousand astronomical units (au) of pre-stellar cores are unexplored. It is within these central regions that stellar systems assemble and fragmentation may take place, with the consequent formation of binaries and multiple systems. We present ALMA Band 6 observations (ACA and 12m array) of the dust continuum emission of the 8 Msun pre-stellar core L1544, with angular resolution of 2 x 1.6 (linear resolution 270 au x 216 au). Within the primary beam, a compact region of 0.1 Msun, which we call a kernel, has been unveiled. The kernel is elongated, with a central flat zone with radius Rker ~ 10 (~ 1400 au). The average number density within Rker is ~1 x 10^6 cm^{-3}, with possible local density enhancements. The region within Rker appears to have fragmented, but detailed analysis shows that similar substructure can be reproduced by synthetic interferometric observations of a smooth centrally concentrated dense core with a similar central flat zone. The presence of a smooth kernel within a dense core is in agreement with non-ideal magneto-hydro-dynamical simulations of a contracting cloud core with a peak number density of 1 x 10^7 cm^{-3}. Dense cores with lower central densities are completely filtered out when simulated 12m-array observations are carried out. These observations demonstrate that the kernel of dynamically evolved dense cores can be investigated at high angular resolution with ALMA.
We studied chromospheric oscillations using Atacama Large millimeter and sub-millimeter Array (ALMA) time-series of interferometric observations of the quiet Sun obtained at 3 mm with a 2-s cadence and a spatial resolution of a few arcsec. The same a nalysis, over the same fields of view and for the same intervals, was performed for simultaneous Atmospheric Imaging Assembly (AIA) image sequences in 1600 A. Spatially-resolved chromospheric oscillations at 3 mm, with frequencies of $ 4.2 +- 1.7$ mHz are observed in the quiet Sun, in both cell and network. The coherence length-scale of the oscillations is commensurate with the spatial resolution of our ALMA observations. Brightness-temperature fluctuations in individual pixels could reach up to a few hundred K, while the spatially averaged power spectral densities yield rms in the range ~ 55-75 K, i.e., up to ~ 1 % of the averaged brightness temperatures and exhibit a moderate increase towards the limb. For AIA 1600 A, the oscillation frequency is 3.7 +- 1.7 mHz. The relative rms is up to 6 % of the background intensity, with a weak increase towards disk center (cell, average). ALMA 3 mm time-series lag AIA 1600 A by ~ 100 s, which corresponds to a formation-height difference of ~ 1200 km. The ALMA oscillations that we detected exhibit higher amplitudes than those derived from the lower (~ 10 arcsec) resolution observations at 3.5 mm by White et al. (2006). Chromospheric oscillations are, therefore, not fully resolved at the length-scale of the chromospheric network, and possibly not even at the spatial resolution of our ALMA observations. Any study of transient brightenings in the mm-domain should take into account the oscillations.
87 - M.J. Kim , S. Kim , S. Youn 2011
We present 1.1 mm observations of the dust continuum emission from the MBM12 high-latitude molecular cloud observed with the Astronomical Thermal Emission Camera (AzTEC) mounted on the James Clerk Maxwell Telescope on Mauna Kea, Hawaii. We surveyed a 6.34 deg$^2$ centered on MBM12, making this the largest area that has ever been surveyed in this region with submillimeter and millimeter telescopes. Eight secure individual sources were detected with a signal-to-noise ratio of over 4.4. These eight AzTEC sources can be considered to be real astronomical objects compared to the other candidates based on calculations of the false detection rate. The distribution of the detected 1.1 mm sources or compact 1.1 mm peaks is spatially anti-correlated with that of the 100 micronm emission and the $^{12}$CO emission. We detected the 1.1 mm dust continuum emitting sources associated with two classical T Tauri stars, LkHalpha262 and LkHalpha264. Observations of spectral energy distributions (SEDs) indicate that LkHalpha262 is likely to be Class II (pre-main-sequence star), but there are also indications that it could be a late Class I (protostar). A flared disk and a bipolar cavity in the models of Class I sources lead to more complicated SEDs. From the present AzTEC observations of the MBM12 region, it appears that other sources detected with AzTEC are likely to be extragalactic and located behind MBM12. Some of these have radio counterparts and their star formation rates are derived from a fit of the SEDs to the photometric evolution of galaxies in which the effects of a dusty interstellar medium have been included.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا