ترغب بنشر مسار تعليمي؟ اضغط هنا

The obscured hyper-energetic GRB 120624B hosted by a luminous compact galaxy at z = 2.20

378   0   0.0 ( 0 )
 نشر من قبل Antonio de Ugarte Postigo
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Gamma-ray bursts are the most luminous explosions that we can witness in the Universe. Studying the most extreme cases of these phenomena allows us to constrain the limits for the progenitor models. In this Letter, we study the prompt emission, afterglow, and host galaxy of GRB 120624B, one of the brightest GRBs detected by Fermi, to derive the energetics of the event and characterise the host galaxy in which it was produced. Following the high-energy detection we conducted a multi-wavelength follow-up campaign, including near-infrared imaging from HAWKI/VLT, optical from OSIRIS/GTC, X-ray observations from the Chandra X-ray Observatory and at sub-millimetre/millimetre wavelengths from SMA. Optical/nIR spectroscopy was performed with X-shooter/VLT. We detect the X-ray and nIR afterglow of the burst and determine a redshift of z = 2.1974 +/- 0.0002 through the identification of emission lines of [OII], [OIII] and H-alpha from the host galaxy of the GRB. This implies an energy release of Eiso = (3.0+/-0.2)x10^54 erg, amongst the most luminous ever detected. The observations of the afterglow indicate high obscuration with AV > 1.5. The host galaxy is compact, with R1/2 < 1.6 kpc, but luminous, at L ~ 1.5 L* and has a star formation rate of 91 +/- 6 Msol/yr as derived from H-alpha. As other highly obscured GRBs, GRB 120624B is hosted by a luminous galaxy, which we also proof to be compact, with a very intense star formation. It is one of the most luminous host galaxies associated with a GRB, showing that the host galaxies of long GRBs are not always blue dwarf galaxies, as previously thought.



قيم البحث

اقرأ أيضاً

[Abridged] We discovered in the Herschel Reference Survey an extremely bright IR source with $S_{500}$~120mJy (Red Virgo 4 - RV4). Based on IRAM/EMIR and IRAM/NOEMA detections of the CO(5-4), CO(4-3), and [CI] lines, RV4 is located at z=4.724, yieldi ng a total observed L$_{IR}$ of 1.1+/-0.6x0$^{14}$L$_{odot}$. At the position of the Herschel emission, three blobs are detected with the VLA at 10cm. The CO(5-4) line detection of each blob confirms that they are at the same redshift with the same line width, indicating that they are multiple images of the same source. In Spitzer and deep optical observations, two sources, High-z Lens 1 (HL1) West and HL1 East, are detected at the center of the three VLA/NOEMA blobs. These two sources are placed at z=1.48 with XSHOOTER spectra, suggesting that they could be merging and gravitationally lensing the emission of RV4. HL1 is the second most distant lens known to date in strong lensing systems. The Einstein radius of the lensing system is 2.2+/-0.2 (20kpc). The high redshift of HL1 and the large Einstein radius are highly unusual for a strong lensing system. We present the ISM properties of the background source RV4. Different estimates of the gas depletion time yield low values suggesting that RV4 is a SB galaxy. Among all high-z SMGs, this source exhibits one of the lowest L$_{[CI]}$ to L$_{IR}$ ratios, 3.2+/-0.9x10$^{-6}$, suggesting an extremely short gas tdepl of only 14+/-5Myr. It also shows a relatively high L$_{[CI]}$ to L$_{CO(4-3)}$ ratio (0.7+/-0.2) and low L$_{CO(5-4)}$ to L$_{IR}$ ratio (only ~50% of the value expected for normal galaxies) hinting a low density of gas. Finally, we discuss that the short tdepl of RV4 can be explained by either a very high SFE, which is difficult to reconcile with major mergers simulations of high-z galaxies, or a rapid decrease of SF, which would bias the estimate of tdepl toward low value.
We report the discovery by the Wide-field Infrared Survey Explorer of the z = 2.452 source WISE J181417.29+341224.9, the first hyperluminous source found in the WISE survey. WISE 1814+3412 is also the prototype for an all-sky sample of ~1000 extremel y luminous W1W2-dropouts (sources faint or undetected by WISE at 3.4 and 4.6 microns and well detected at 12 or 22 microns). The WISE data and a 350 micron detection give a minimum bolometric luminosity of 3.7 x 10^13 Lsun, with ~10^14 Lsun plausible. Followup images reveal four nearby sources: a QSO and two Lyman Break Galaxies (LBGs) at z = 2.45, and an M dwarf star. The brighter LBG dominates the bolometric emission. Gravitational lensing is unlikely given the source locations and their different spectra and colors. The dominant LBG spectrum indicates a star formation rate ~300 Msun/yr, accounting for < 10% of the bolometric luminosity. Strong 22 micron emission relative to 350 microns implies that warm dust contributes significantly to the luminosity, while cooler dust normally associated with starbursts is constrained by an upper limit at 1.1 mm. Radio emission is ~10x above the far-infrared/radio correlation, indicating an active galactic nucleus is present. An obscured AGN combined with starburst and evolved stellar components can account for the observations. If the black hole mass follows the local M_BH-bulge mass relation, the implied Eddington ratio is >~4. WISE 1814+3412 may be a heavily obscured object where the peak AGN activity occurred prior to the peak era of star formation.
Gamma-ray bursts (GRBSs) are produced by rare types of massive stellar explosions. Their rapidly fading afterglows are often bright enough at optical wavelengths, that they are detectable up to cosmological distances. Hirtheto, the highest known reds hift for a GRB was z=6.7, for GRB 080913, and for a galaxy was z=6.96. Here we report observations of GRB 090423 and the near-infrared spectroscopic measurement of its redshift z=8.1^{+0.1}_{-0.3}. This burst happened when the Universe was only ~4% of its current age. Its properties are similar to those of GRBs observed at low/intermediate redshifts, suggesting that the mechanisms and progenitors that gave rise to this burst about 600 million years after the Big Bang are not markedly different from those producing GRBs ~10 billion years later.
144 - E. R. Stanway 2014
We present an analysis of the photometry and spectroscopy of the host galaxy of Swift-detected GRB 080517. From our optical spectroscopy, we identify a redshift of z = 0.089 +/- 0.003, based on strong emission lines, making this a rare example of a v ery local, low luminosity, long gamma ray burst. The galaxy is detected in the radio with a flux density of S(4.8GHz) =0.22 +/- 0.04mJy - one of relatively few known GRB hosts with a securely measured radio flux. Both optical emission lines and a strong detection at 22 um suggest that the host galaxy is forming stars rapidly, with an inferred star formation rate ~16 Msun/yr and a high dust obscuration (E(B-V )>1, based on sight-lines to the nebular emission regions). The presence of a companion galaxy within a projected distance of 25 kpc, and almost identical in redshift, suggests that star formation may have been triggered by galaxy-galaxy interaction. However, fitting of the remarkably flat spectral energy distribution from the ultraviolet through to the infrared suggests that an older, 500Myr post-starburst stellar population is present along with the ongoing star formation. We suggest that that the host galaxy of GRB 080517 is a valuable addition to the still very small sample of well-studied local gamma-ray burst hosts.
We report the discovery of a six-month-long mid-infrared transient, SDWFS-MT-1 (aka SN 2007va), in the Spitzer Deep, Wide-Field Survey of the NOAO Deep Wide-Field Survey Bootes field. The transient, located in a z=0.19 low luminosity (M_[4.5]~-18.6 m ag, L/L_MilkyWay~0.01) metal-poor (12+log(O/H)~7.8) irregular galaxy, peaked at a mid-infrared absolute magnitude of M_[4.5]~-24.2 in the 4.5 micron Spitzer/IRAC band and emitted a total energy of at least 10^51 ergs. The optical emission was likely fainter than the mid-infrared, although our constraints on the optical emission are poor because the transient peaked when the source was behind the Sun. The Spitzer data are consistent with emission by a modified black body with a temperature of ~1350 K. We rule out a number of scenarios for the origin of the transient such as a Galactic star, AGN activity, GRB, tidal disruption of a star by a black hole and gravitational lensing. The most plausible scenario is a supernova exploding inside a massive, optically thick circumstellar medium, composed of multiple shells of previously ejected material. If the proposed scenario is correct, then a significant fraction (~10%) of the most luminous supernova may be self-enshrouded by dust not only before but also after the supernova occurs. The spectral energy distribution of the progenitor of such a supernova would be a slightly cooler version of eta Carina, peaking at 20-30 microns.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا