ترغب بنشر مسار تعليمي؟ اضغط هنا

161 - I. Krichever , A. Zabrodin 2021
We introduce a new integrable hierarchy of nonlinear differential-difference equations which we call constrained Toda hierarchy (C-Toda). It can be regarded as a certain subhierarchy of the 2D Toda lattice obtained by imposing the constraint $bar {ca l L}={cal L}^{dag}$ on the two Lax operators (in the symmetric gauge). We prove the existence of the tau-function of the C-Toda hierarchy and show that it is the square root of the 2D Toda lattice tau-function. In this and some other respects the C-Toda is a Toda analogue of the CKP hierarchy. It is also shown that zeros of the tau-function of elliptic solutions satisfy the dynamical equations of the Ruijsenaars-Schneider model restricted to turning points in the phase space. The spectral curve has holomorphic involution which interchange the marked points in which the Baker-Akhiezer function has essential singularities.
96 - V. Prokofev , A. Zabrodin 2021
We consider solutions of the matrix KP hierarchy that are elliptic functions of the first hierarchical time $t_1=x$. It is known that poles $x_i$ and matrix residues at the poles $rho_i^{alpha beta}=a_i^{alpha}b_i^{beta}$ of such solutions as functio ns of the time $t_2$ move as particles of spin generalization of the elliptic Calogero-Moser model (elliptic Gibbons-Hermsen model). In this paper we establish the correspondence with the spin elliptic Calogero-Moser model for the whole matrix KP hierarchy. Namely, we show that the dynamics of poles and matrix residues of the solutions with respect to the $k$-th hierarchical time of the matrix KP hierarchy is Hamiltonian with the Hamiltonian $H_k$ obtained via an expansion of the spectral curve near the marked points. The Hamiltonians are identified with the Hamiltonians of the elliptic spin Calogero-Moser system with coordinates $x_i$ and spin degrees of freedom $a_i^{alpha}, , b_i^{beta}$.
339 - V. Prokofev , A. Zabrodin 2021
We consider solutions of the 2D Toda lattice hierarchy which are elliptic functions of the zeroth time t_0=x. It is known that their poles as functions of t_1 move as particles of the elliptic Ruijsenaars-Schneider model. The goal of this paper is to extend this correspondence to the level of hierarchies. We show that the Hamiltonians which govern the dynamics of poles with respect to the m-th hierarchical times t_m and bar t_m of the 2D Toda lattice hierarchy are obtained from expansion of the spectral curve for the Lax matrix of the Ruijsenaars-Schneider model at the marked points.
181 - A. Zabrodin 2021
This is a short review of the Kadomtsev-Petviashvili hierarchies of types B and C. The main objects are the $L$-operator, the wave operator, the auxiliary linear problems for the wave function, the bilinear identity for the wave function and the tau- function. All of them are discussed in the paper. The connections with the usual Kadomtsev-Petviashvili hierarchy (of the type A) are clarified. Examples of soliton solutions and the dispersionless limit of the hierarchies are also considered.
136 - V. Prokofev , A. Zabrodin 2021
We consider solutions of the KP hierarchy which are elliptic functions of $x=t_1$. It is known that their poles as functions of $t_2$ move as particles of the elliptic Calogero-Moser model. We extend this correspondence to the level of hierarchies an d find the Hamiltonian $H_k$ of the elliptic Calogero-Moser model which governs the dynamics of poles with respect to the $k$-th hierarchical time. The Hamiltonians $H_k$ are obtained as coefficients of the expansion of the spectral curve near the marked point in which the Baker-Akhiezer function has essential singularity.
126 - I. Krichever , A. Zabrodin 2020
A characterization of the Kadomtsev-Petviashvili hierarchy of type C (CKP) in terms of the KP tau-function is given. Namely, we prove that the CKP hierarchy can be identified with the restriction of odd times flows of the KP hierarchy on the locus of turning points of the second flow. The notion of CKP tau-function is clarified and connected with the KP tau function. Algebraic-geometrical solutions and in particular elliptic solutions are discussed in detail. The new identity for theta-functions of curves with holomorphic involution having fixed points is obtained.
323 - V. Prokofev , A. Zabrodin 2019
We consider solutions of the matrix KP hierarchy that are trigonometric functions of the first hierarchical time $t_1=x$ and establish the correspondence with the spin generalization of the trigonometric Calogero-Moser system on the level of hierarch ies. Namely, the evolution of poles $x_i$ and matrix residues at the poles $a_i^{alpha}b_i^{beta}$ of the solutions with respect to the $k$-th hierarchical time of the matrix KP hierarchy is shown to be given by the Hamiltonian flow with the Hamiltonian which is a linear combination of the first $k$ higher Hamiltonians of the spin trigonometric Calogero-Moser system with coordinates $x_i$ and with spin degrees of freedom $a_i^{alpha}, , b_i^{beta}$. By considering evolution of poles according to the discrete time matrix KP hierarchy we also introduce the integrable discrete time version of the trigonometric spin Calogero-Moser system.
104 - A. Zabrodin 2009
A fat slit is a compact domain in the upper half plane bounded by a curve with endpoints on the real axis and a segment of the real axis between them. We consider conformal maps of the upper half plane to the exterior of a fat slit parameterized by h armonic moments of the latter and show that they obey an infinite set of Lax equations for the dispersionless KP hierarchy. Deformation of a fat slit under changing a particular harmonic moment can be treated as a growth process similar to the Laplacian growth of domains in the whole plane. This construction extends the well known link between solutions to the dispersionless KP hierarchy and conformal maps of slit domains in the upper half plane and provides a new, large family of solutions.
133 - A. Zabrodin 2007
We consider GL(K|M)-invariant integrable supersymmetric spin chains with twisted boundary conditions and elucidate the role of Backlund transformations in solving the difference Hirota equation for eigenvalues of their transfer matrices. The nested B ethe ansatz technique is shown to be equivalent to a chain of successive Backlund transformations undressing the original problem to a trivial one.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا