ﻻ يوجد ملخص باللغة العربية
We consider solutions of the KP hierarchy which are elliptic functions of $x=t_1$. It is known that their poles as functions of $t_2$ move as particles of the elliptic Calogero-Moser model. We extend this correspondence to the level of hierarchies and find the Hamiltonian $H_k$ of the elliptic Calogero-Moser model which governs the dynamics of poles with respect to the $k$-th hierarchical time. The Hamiltonians $H_k$ are obtained as coefficients of the expansion of the spectral curve near the marked point in which the Baker-Akhiezer function has essential singularity.
We consider solutions of the matrix KP hierarchy that are elliptic functions of the first hierarchical time $t_1=x$. It is known that poles $x_i$ and matrix residues at the poles $rho_i^{alpha beta}=a_i^{alpha}b_i^{beta}$ of such solutions as functio
We consider solutions of the 2D Toda lattice hierarchy which are elliptic functions of the zeroth time t_0=x. It is known that their poles as functions of t_1 move as particles of the elliptic Ruijsenaars-Schneider model. The goal of this paper is to
Using the determinant representation of gauge transformation operator, we have shown that the general form of $tau$ function of the $q$-KP hierarchy is a q-deformed generalized Wronskian, which includes the q-deformed Wronskian as a special case. On
We consider solutions of the matrix KP hierarchy that are trigonometric functions of the first hierarchical time $t_1=x$ and establish the correspondence with the spin generalization of the trigonometric Calogero-Moser system on the level of hierarch
We study higher order KdV equations from the GL(2,$mathbb{R}$) $cong$ SO(2,1) Lie group point of view. We find elliptic solutions of higher order KdV equations up to the ninth order. We argue that the main structure of the trigonometric/hyperbolic/el