ترغب بنشر مسار تعليمي؟ اضغط هنا

Using the non-equilibrium Keldysh formalism, we solve the equations of motion for electron-phonon superconductivity, including an ultrafast pump field. We present results for time-dependent photoemission spectra out of equilibrium which probes the dy namics of the superconducting gap edge. The partial melting of the order by the pump field leads to oscillations at twice the melted gap frequency, a hallmark of the Higgs or amplitude mode. Thus the Higgs mode can be directly excited through the nonlinear effects of an electromagnetic field and detected without any additional symmetry breaking.
The redistribution of electrons in an ultrafast pump-probe experiment causes significant changes to the effective interaction between electrons and bosonic modes. We study the influence of these changes on pump-probe photoemission spectroscopy for a model electron-phonon coupled system using the nonequilibrium Keldysh formalism. We show that spectral rearrangement due to the driving field preserves an overall sum rule for the electronic self-energy, but modifies the effective electron-phonon scattering as a function of energy. Experimentally, this pump-modified scattering can be tracked by analyzing the fluence or excitation energy dependence of population decay rates and transient changes in dispersion kinks.
The unoccupied states of complex materials are difficult to measure, yet play a key role in determining their properties. We propose a technique that can measure the unoccupied states, called time-resolved Compton scattering, which measures the time- dependent momentum distribution (TDMD). Using a non-equilibrium Keldysh formalism, we study the TDMD for electrons coupled to a lattice in a pump-probe setup. We find a direct relation between temporal oscillations in the TDMD and the dispersion of the underlying unoccupied states, suggesting that both can be measured by time-resolved Compton scattering. We demonstrate the experimental feasibility by applying the method to a model of MgB$_2$ with realistic material parameters.
We consider several aspects of high-order harmonic generation in solids: the effects of elastic and inelastic scattering; varying pulse characteristics; and inclusion of material-specific parameters through a realistic band structure. We reproduce ma ny observed characteristics of high harmonic generation experiments in solids including the formation of only odd harmonics in inversion-symmetric materials, and the nonlinear formation of high harmonics with increasing field. We find that the harmonic spectra are fairly robust against elastic and inelastic scattering. Furthermore, we find that the pulse characteristics play an important role in determining the harmonic spectra.
We study the dynamical quasiparticle scattering by spin and charge fluctuations in Fe-based pnictides within a five-orbital model with on-site interactions. The leading contribution to the scattering rate is calculated from the second-order diagrams with the polarization operator calculated in the random-phase approximation. We find one-particle scattering rates which are highly anisotropic on each Fermi surface sheet due to the momentum dependence of the spin susceptibility and the multi-orbital composition of each Fermi pocket. This fact, combined with the anisotropy of the effective mass, produces disparity between electrons and holes in conductivity, the Hall coefficient, and the Raman initial slope, in qualitative agreement with experimental data.
Experiments on the iron-pnictide superconductors appear to show some materials where the ground state is fully gapped, and others where low-energy excitations dominate, possibly indicative of gap nodes. Within the framework of a 5-orbital spin fluctu ation theory for these systems, we discuss how changes in the doping, the electronic structure or interaction parameters can tune the system from a fully gapped to nodal sign-changing gap with s-wave ($A_{1g}$) symmetry ($s^pm$). In particular we focus on the role of the hole pocket at the $(pi,pi)$ point of the unfolded Brillouin zone identified as crucial to the pairing by Kuroki {it et al.}, and show that its presence leads to additional nesting of hole and electron pockets which stabilizes the isotropic $s^pm$ state. The pockets contribution to the pairing can be tuned by doping, surface effects, and by changes in interaction parameters, which we examine. Analytic expressions for orbital pairing vertices calculated within the RPA fluctuation exchange approximation allow us to draw connections between aspects of electronic structure, interaction parameters, and the form of the superconducting gap.
We investigate the dual roles of a cobalt impurity in the Ba-122 ferropnictide superconductor in the state with coexisting collinear spin density wave (SDW) order as a dopant and as a scattering center, using first principles electronic structure met hods. The Co atom is found to dope the FeAs plane where it is located with a single delocalized electron as expected, but also induces a strong perturbation of the SDW ground state of the system. This in turn induces a stripe-like modulation of the density of states in nearby planes which may be observable in STM experiments. The defect is found to have an intermediate strength nonmagnetic scattering potential with a range of roughly 1 Angstrom, and the Co gives rise to a smaller but longer range magnetic scattering potential. The impurity potential in both channels is highly anisotropic, reflecting the broken symmetry of the SDW ground state. We give values for the effective Co potentials for each d orbital on the impurity and nearby sites. The calculation also shows a clear local resonance comprised of Co states about 200meV above the Fermi level, in quantitative agreement with a recent report from STM. Finally, we discuss the issue of the effective dimensionality of the 122 materials, and show that the hybridization of the out-of-phase As atoms leads to a higher density of states between the FeAs planes relative to the 1111 counterparts.
Using a dynamical cluster quantum Monte Carlo approximation, we investigate the effect of local disorder on the stability of d-wave superconductivity including the effect of electronic correlations in both particle-particle and particle-hole channels . With increasing impurity potential, we find an initial rise of the critical temperature due to an enhancement of anti-ferromagnetic spin correlations, followed by a decrease of Tc due to scattering from impurity-induced moments and ordinary pairbreaking. We discuss the weak initial dependence of Tc on impurity concentration found in comparison to experiments on cuprates.
Evidence of curvature effects on the interaction and binding of silver clusters on folded graphitic surfaces has been shown from both experiment and theory. Density Functional Theory (DFT) calculations within the local density and generalized gradien t approximations have been performed for the structural relaxation of both Ag and Ag$_2$ on curved surfaces, showing a cross-over from quantum to classical behaviour. Using Lennard-Jones potential to model the interaction between a single cluster and the graphene surface, evidence is found for the curvature effect on the binding of silver nano-particles to folding graphitic surfaces. The theoretical results are compared to SEM and AFM images of samples obtained from pre-formed silver cluster deposition on carboneous substrates exhibiting anisotropic pleat structures.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا