ترغب بنشر مسار تعليمي؟ اضغط هنا

Anisotropic quasiparticle lifetimes in Fe-based superconductors

158   0   0.0 ( 0 )
 نشر من قبل Alexander Kemper
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the dynamical quasiparticle scattering by spin and charge fluctuations in Fe-based pnictides within a five-orbital model with on-site interactions. The leading contribution to the scattering rate is calculated from the second-order diagrams with the polarization operator calculated in the random-phase approximation. We find one-particle scattering rates which are highly anisotropic on each Fermi surface sheet due to the momentum dependence of the spin susceptibility and the multi-orbital composition of each Fermi pocket. This fact, combined with the anisotropy of the effective mass, produces disparity between electrons and holes in conductivity, the Hall coefficient, and the Raman initial slope, in qualitative agreement with experimental data.



قيم البحث

اقرأ أيضاً

93 - J. Li , D. Zhao , Y. P. Wu 2016
In correlated electrons system, quantum melting of electronic crystalline phase often gives rise to many novel electronic phases. In cuprates superconductors, melting the Mott insulating phase with carrier doping leads to a quantum version of liquid crystal phase, the electronic nematicity, which breaks the rotational symmetry and exhibits a tight twist with high-temperature superconductivity. Recently, the electronic nematicity has also been observed in Fe-based superconductors. However, whether it shares a similar scenario with its cuprates counterpart is still elusive. Here, by measuring nuclear magnetic resonance in CsFe2As2, a prototypical Fe-based superconductor perceived to have evolved from a Mott insulating phase at 3d5 configuration, we report anisotropic quadruple broadening effect as a direct result of local rotational symmetry breaking. For the first time, clear connection between the Mott insulating phase and the electronic nematicity can be established and generalized to the Fe-based superconductors. This finding would promote a universal understanding on electronic nematicity and its relation with high-temperature superconductivity.
We investigate the physical effects of translational symmetry breaking in Fe-based high-temperature superconductors due to alternating anion positions. In the representative parent compounds, including the newly discovered Fe-vacancy-ordered $mathrm{ K_{0.8}Fe_{1.6}Se_2}$, an unusual change of orbital character is found across the one-Fe Brillouin zone upon unfolding the first-principles band structure and Fermi surfaces, suggesting that covering a larger one-Fe Brillouin zone is necessary in experiments. Most significantly, the electron pockets (critical to the magnetism and superconductivity) are found only created with the broken symmetry, advocating strongly its full inclusion in future studies, particularly on the debated nodal structures of the superconducting order parameter.
We develop a phenomenological theory for the family of uranium-based heavy fermion superconductors ($URhGe$, $UCoGe$, and $UTe_2$ ). The theory unifies the understanding of both superconductivity(SC) with a weak magnetic field and reentrant supercond uctivity(RSC) that appears at the first-order transition line with a high magnetic field. It is shown that the magnetizations along the easy and hard axis have opposite effects on superconductivity. The RSC is induced by the fluctuation parallel to the direction of the magnetic field. The theory makes specific predictions about the variation of triplet superconductivity order parameters $vec{d}$ with applied external magnetic fields and the existence of a metastable state for the appearance of the RSC.
Topological insulators and semimetals as well as unconventional iron-based superconductors have attracted major recent attention in condensed matter physics. Previously, however, little overlap has been identified between these two vibrant fields, ev en though the principal combination of topological bands and superconductivity promises exotic unprecedented avenues of superconducting states and Majorana bound states (MBSs), the central building block for topological quantum computation. Along with progressing laser-based spin-resolved and angle-resolved photoemission spectroscopy (ARPES) towards high energy and momentum resolution, we have resolved topological insulator (TI) and topological Dirac semimetal (TDS) bands near the Fermi level ($E_{text{F}}$) in the iron-based superconductors Li(Fe,Co)As and Fe(Te,Se), respectively. The TI and TDS bands can be individually tuned to locate close to $E_{text{F}}$ by carrier doping, allowing to potentially access a plethora of different superconducting topological states in the same material. Our results reveal the generic coexistence of superconductivity and multiple topological states in iron-based superconductors, rendering these materials a promising platform for high-$T_{text{c}}$ topological superconductivity.
111 - B. L. Kang , M. Z. Shi , S. J. Li 2019
Superconductivity arises from two distinct quantum phenomena: electron pairing and long-range phase coherence. In conventional superconductors, the two quantum phenomena generally take place simultaneously, while the electron pairing occurs at higher temperature than the long-range phase coherence in the underdoped high-Tc cuprate superconductors. Recently, whether electron pairing is also prior to long-range phase coherence in single-layer FeSe film on SrTiO3 substrate is under debate. Here, by measuring Knight shift and nuclear spin-lattice relaxation rate, we unambiguously reveal a pseudogap behavior below Tp ~ 60 K in two layered FeSe-based superconductors with quasi-two-dimension. In the pseudogap regime, a weak diamagnetic signal and a remarkable Nernst effect are also observed, which indicate that the observed pseudogap behavior is related to superconducting fluctuations. These works confirm that strong phase fluctuation is an important character in the two-dimensional iron-based superconductors as widely observed in high-Tc cuprate superconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا