ﻻ يوجد ملخص باللغة العربية
Using a dynamical cluster quantum Monte Carlo approximation, we investigate the effect of local disorder on the stability of d-wave superconductivity including the effect of electronic correlations in both particle-particle and particle-hole channels. With increasing impurity potential, we find an initial rise of the critical temperature due to an enhancement of anti-ferromagnetic spin correlations, followed by a decrease of Tc due to scattering from impurity-induced moments and ordinary pairbreaking. We discuss the weak initial dependence of Tc on impurity concentration found in comparison to experiments on cuprates.
The phase diagram of the superconducting high-Tc cuprates is governed by two energy scales: T*, the temperature below which a gap is opened in the excitation spectrum, and Tc, the superconducting transition temperature. The way these two energy scale
X-ray absorption spectroscopy (XAS) and high resolution X-ray diffraction are combined to study the interplay between electronic and lattice structures in controlling the superconductivity in cuprates with a model charge-compensated CaxLa1-xBa1.75-xL
A pivotal step toward understanding unconventional superconductors would be to decipher how superconductivity emerges from the unusual normal state upon cooling. In the cuprates, traces of superconducting pairing appear above the macroscopic transiti
We have studied the influence of disorder induced by electron irradiation on the Nernst effect in optimally and underdoped YBa2Cu3O(7-d) single crystals. The fluctuation regime above T_{c} expands significantly with disorder, indicating that the T_{c
The formation of domains comprising alternating hole rich and hole poor ladders recently observed by Scanning Tunneling Microscopy by Kohsaka et al., on lightly hole doped cuprates, is interpreted in terms of an attractive mechanism which favors the