ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct observation of Higgs mode oscillations in the pump-probe photoemission spectra of electron-phonon mediated superconductors

199   0   0.0 ( 0 )
 نشر من قبل Alexander Kemper
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using the non-equilibrium Keldysh formalism, we solve the equations of motion for electron-phonon superconductivity, including an ultrafast pump field. We present results for time-dependent photoemission spectra out of equilibrium which probes the dynamics of the superconducting gap edge. The partial melting of the order by the pump field leads to oscillations at twice the melted gap frequency, a hallmark of the Higgs or amplitude mode. Thus the Higgs mode can be directly excited through the nonlinear effects of an electromagnetic field and detected without any additional symmetry breaking.


قيم البحث

اقرأ أيضاً

Recent developments in the techniques of ultrafast pump-probe photoemission have made possible the search for collective modes in strongly correlated systems out of equilibrium. Including inelastic scattering processes and a retarded interaction, we simulate time- and angle- resolved photoemission spectroscopy (trARPES) to study the amplitude mode of a d-wave superconductor, a collective mode excited through the nonlinear light-matter coupling to the pump pulse. We find that the amplitude mode oscillations of the d-wave order parameter occur in phase at a single frequency that is twice the quasi-steady-state maximum gap size after pumping. We comment on the necessary conditions for detecting the amplitude mode in trARPES experiments.
We show that the superconducting energy gap $Delta$ can be directly observed in phonon spectra, as predicted by recent theories. In addition, since each phonon probes the gap on only a small part of the Fermi surface, the gap anisotropy can be studie d in detail. Our neutron scattering investigation of the anisotropic conventional superconductor YNi$_2$B$_2$C demonstrates this new application of phonon spectroscopy.
We put forth a mechanism for enhancing the interlayer transport in cuprate superconductors, by optically driving plasmonic excitations along the $c$ axis with a frequency that is blue-detuned from the Higgs frequency. The plasmonic excitations induce a collective oscillation of the Higgs field which induces a parametric enhancement of the superconducting response, as we demonstrate with a minimal analytical model. Furthermore, we perform simulations of a particle-hole symmetric $U(1)$ lattice gauge theory and find good agreement with our analytical prediction. We map out the renormalization of the interlayer coupling as a function of the parameters of the optical field and demonstrate that the Higgs mode mediated enhancement can be larger than $50%$.
We present a detailed study on the influence of strong electron-phonon coupling to the photoemission spectra of lead. Representing the strong-coupling regime of superconductivity, the spectra of lead show characteristic features that demonstrate the correspondence of physical properties in the normal and the superconducting state, as predicted by the Eliashberg theory. These features appear on an energy scale of a few meV and are accessible for photoemission only by using modern spectrometers with high resolution in energy and angle.
108 - Ryo Shimano , Naoto Tsuji 2019
When a continuous symmetry of a physical system is spontaneously broken, two types of collective modes typically emerge: the amplitude and phase modes of the order-parameter fluctuation. For superconductors, the amplitude mode is recently referred to as the Higgs mode as it is a condensed-matter analogue of a Higgs boson in particle physics. Higgs mode is a scalar excitation of the order parameter, distinct from charge or spin fluctuations, and thus does not couple to electromagnetic fields linearly. This is why the Higgs mode in superconductors has evaded experimental observations over a half century after the initial theoretical prediction, except for a charge-density-wave coexisting system. With the advance of nonlinear and time-resolved terahertz spectroscopy techniques, however, it has become possible to study the Higgs mode through the nonlinear light-Higgs coupling. In this review, we overview recent progresses on the study of the Higgs mode in superconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا