ترغب بنشر مسار تعليمي؟ اضغط هنا

Nanoelectronic devices emulating neuro-synaptic functionalities through their intrinsic physics at low operating energies is imperative toward the realization of brain-like neuromorphic computers. In this work, we leverage the non-linear voltage depe ndent partial polarization switching of a ferroelectric field effect transistor to mimic plasticity characteristics of biological synapses. We provide experimental measurements of the synaptic characteristics for a $28nm$ high-k metal gate technology based device and develop an experimentally calibrated device model for large-scale system performance prediction. Decoupled read-write paths, ultra-low programming energies and the possibility of arranging such devices in a cross-point architecture demonstrate the synaptic efficacy of the device. Our hardware-algorithm co-design analysis reveals that the intrinsic plasticity of the ferroelectric devices has potential to enable unsupervised local learning in edge devices with limited training data.
Neuromorphic computing is emerging to be a disruptive computational paradigm that attempts to emulate various facets of the underlying structure and functionalities of the brain in the algorithm and hardware design of next-generation machine learning platforms. This work goes beyond the focus of current neuromorphic computing architectures on computational models for neuron and synapse to examine other computational units of the biological brain that might contribute to cognition and especially self-repair. We draw inspiration and insights from computational neuroscience regarding functionalities of glial cells and explore their role in the fault-tolerant capacity of Spiking Neural Networks (SNNs) trained in an unsupervised fashion using Spike-Timing Dependent Plasticity (STDP). We characterize the degree of self-repair that can be enabled in such networks with varying degree of faults ranging from 50% - 90% and evaluate our proposal on the MNIST and Fashion-MNIST datasets.
Astrocytes play a central role in inducing concerted phase synchronized neural-wave patterns inside the brain. In this article, we demonstrate that injected radio-frequency signal in underlying heavy metal layer of spin-orbit torque oscillator neuron s mimic the neuron phase synchronization effect realized by glial cells. Potential application of such phase coupling effects is illustrated in the context of a temporal binding problem. We also present the design of a coupled neuron-synapse-astrocyte network enabled by compact neuromimetic devices by combining the concepts of local spike-timing dependent plasticity and astrocyte induced neural phase synchrony.
116 - Sen Lu , Abhronil Sengupta 2020
On-chip edge intelligence has necessitated the exploration of algorithmic techniques to reduce the compute requirements of current machine learning frameworks. This work aims to bridge the recent algorithmic progress in training Binary Neural Network s and Spiking Neural Networks - both of which are driven by the same motivation and yet synergies between the two have not been fully explored. We show that training Spiking Neural Networks in the extreme quantization regime results in near full precision accuracies on large-scale datasets like CIFAR-$100$ and ImageNet. An important implication of this work is that Binary Spiking Neural Networks can be enabled by In-Memory hardware accelerators catered for Binary Neural Networks without suffering any accuracy degradation due to binarization. We utilize standard training techniques for non-spiking networks to generate our spiking networks by conversion process and also perform an extensive empirical analysis and explore simple design-time and run-time optimization techniques for reducing inference latency of spiking networks (both for binary and full-precision models) by an order of magnitude over prior work.
Emulating various facets of computing principles of the brain can potentially lead to the development of neuro-computers that are able to exhibit brain-like cognitive capabilities. In this letter, we propose a magnetoelectronic neuron that utilizes n oise as a computing resource and is able to encode information over time through the independent control of external voltage signals. We extensively characterize the device operation using simulations and demonstrate its suitability for neuromorphic computing platforms performing temporal information encoding.
Uncertainty plays a key role in real-time machine learning. As a significant shift from standard deep networks, which does not consider any uncertainty formulation during its training or inference, Bayesian deep networks are being currently investiga ted where the network is envisaged as an ensemble of plausible models learnt by the Bayes formulation in response to uncertainties in sensory data. Bayesian deep networks consider each synaptic weight as a sample drawn from a probability distribution with learnt mean and variance. This paper elaborates on a hardware design that exploits cycle-to-cycle variability of oxide based Resistive Random Access Memories (RRAMs) as a means to realize such a probabilistic sampling function, instead of viewing it as a disadvantage.
Probabilistic machine learning enabled by the Bayesian formulation has recently gained significant attention in the domain of automated reasoning and decision-making. While impressive strides have been made recently to scale up the performance of dee p Bayesian neural networks, they have been primarily standalone software efforts without any regard to the underlying hardware implementation. In this paper, we propose an All-Spin Bayesian Neural Network where the underlying spintronic hardware provides a better match to the Bayesian computing models. To the best of our knowledge, this is the first exploration of a Bayesian neural hardware accelerator enabled by emerging post-CMOS technologies. We develop an experimentally calibrated device-circuit-algorithm co-simulation framework and demonstrate $24times$ reduction in energy consumption against an iso-network CMOS baseline implementation.
Over the past few years, Spiking Neural Networks (SNNs) have become popular as a possible pathway to enable low-power event-driven neuromorphic hardware. However, their application in machine learning have largely been limited to very shallow neural network architectures for simple problems. In this paper, we propose a novel algorithmic technique for generating an SNN with a deep architecture, and demonstrate its effectiveness on complex visual recognition problems such as CIFAR-10 and ImageNet. Our technique applies to both VGG and Residual network architectures, with significantly better accuracy than the state-of-the-art. Finally, we present analysis of the sparse event-driven computations to demonstrate reduced hardware overhead when operating in the spiking domain.
Present day computers expend orders of magnitude more computational resources to perform various cognitive and perception related tasks that humans routinely perform everyday. This has recently resulted in a seismic shift in the field of computation where research efforts are being directed to develop a neurocomputer that attempts to mimic the human brain by nanoelectronic components and thereby harness its efficiency in recognition problems. Bridging the gap between neuroscience and nanoelectronics, this paper attempts to provide a review of the recent developments in the field of spintronic device based neuromorphic computing. Description of various spin-transfer torque mechanisms that can be potentially utilized for realizing device structures mimicking neural and synaptic functionalities is provided. A cross-layer perspective extending from the device to the circuit and system level is presented to envision the design of an All-Spin neuromorphic processor enabled with on-chip learning functionalities. Device-circuit-algorithm co-simulation framework calibrated to experimental results suggest that such All-Spin neuromorphic systems can potentially achieve almost two orders of magnitude energy improvement in comparison to state-of-the-art CMOS implementations.
Probabilistic inference from real-time input data is becoming increasingly popular and may be one of the potential pathways at enabling cognitive intelligence. As a matter of fact, preliminary research has revealed that stochastic functionalities als o underlie the spiking behavior of neurons in cortical microcircuits of the human brain. In tune with such observations, neuromorphic and other unconventional computing platforms have recently started adopting the usage of computational units that generate outputs probabilistically, depending on the magnitude of the input stimulus. In this work, we experimentally demonstrate a spintronic device that offers a direct mapping to the functionality of such a controllable stochastic switching element. We show that the probabilistic switching of Ta/CoFeB/MgO heterostructures in presence of spin-orbit torque and thermal noise can be harnessed to enable probabilistic inference in a plethora of unconventional computing scenarios. This work can potentially pave the way for hardware that directly mimics the computational units of Bayesian inference.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا