ﻻ يوجد ملخص باللغة العربية
Present day computers expend orders of magnitude more computational resources to perform various cognitive and perception related tasks that humans routinely perform everyday. This has recently resulted in a seismic shift in the field of computation where research efforts are being directed to develop a neurocomputer that attempts to mimic the human brain by nanoelectronic components and thereby harness its efficiency in recognition problems. Bridging the gap between neuroscience and nanoelectronics, this paper attempts to provide a review of the recent developments in the field of spintronic device based neuromorphic computing. Description of various spin-transfer torque mechanisms that can be potentially utilized for realizing device structures mimicking neural and synaptic functionalities is provided. A cross-layer perspective extending from the device to the circuit and system level is presented to envision the design of an All-Spin neuromorphic processor enabled with on-chip learning functionalities. Device-circuit-algorithm co-simulation framework calibrated to experimental results suggest that such All-Spin neuromorphic systems can potentially achieve almost two orders of magnitude energy improvement in comparison to state-of-the-art CMOS implementations.
Brain-inspired neuromorphic computing which consist neurons and synapses, with an ability to perform complex information processing has unfolded a new paradigm of computing to overcome the von Neumann bottleneck. Electronic synaptic memristor devices
Fabricating powerful neuromorphic chips the size of a thumb requires miniaturizing their basic units: synapses and neurons. The challenge for neurons is to scale them down to submicrometer diameters while maintaining the properties that allow for rel
Neuromorphic computing takes inspiration from the brain to create energy efficient hardware for information processing, capable of highly sophisticated tasks. In this article, we make the case that building this new hardware necessitates reinventing
Modern computation based on the von Neumann architecture is today a mature cutting-edge science. In this architecture, processing and memory units are implemented as separate blocks interchanging data intensively and continuously. This data transfer
Neuromorphic hardware platforms implement biological neurons and synapses to execute spiking neural networks (SNNs) in an energy-efficient manner. We present SpiNeMap, a design methodology to map SNNs to crossbar-based neuromorphic hardware, minimizi