ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Self-Repair Role of Astrocytes in STDP Enabled Unsupervised SNNs

84   0   0.0 ( 0 )
 نشر من قبل Abhronil Sengupta
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Neuromorphic computing is emerging to be a disruptive computational paradigm that attempts to emulate various facets of the underlying structure and functionalities of the brain in the algorithm and hardware design of next-generation machine learning platforms. This work goes beyond the focus of current neuromorphic computing architectures on computational models for neuron and synapse to examine other computational units of the biological brain that might contribute to cognition and especially self-repair. We draw inspiration and insights from computational neuroscience regarding functionalities of glial cells and explore their role in the fault-tolerant capacity of Spiking Neural Networks (SNNs) trained in an unsupervised fashion using Spike-Timing Dependent Plasticity (STDP). We characterize the degree of self-repair that can be enabled in such networks with varying degree of faults ranging from 50% - 90% and evaluate our proposal on the MNIST and Fashion-MNIST datasets.



قيم البحث

اقرأ أيضاً

Spiking neural networks (SNNs) receive widespread attention because of their low-power hardware characteristic and brain-like signal response mechanism, but currently, the performance of SNNs is still behind Artificial Neural Networks (ANNs). We buil d an information theory-inspired system called Stochastic Probability Adjustment (SPA) system to reduce this gap. The SPA maps the synapses and neurons of SNNs into a probability space where a neuron and all connected pre-synapses are represented by a cluster. The movement of synaptic transmitter between different clusters is modeled as a Brownian-like stochastic process in which the transmitter distribution is adaptive at different firing phases. We experimented with a wide range of existing unsupervised SNN architectures and achieved consistent performance improvements. The improvements in classification accuracy have reached 1.99% and 6.29% on the MNIST and EMNIST datasets respectively.
Neural networks have shown great potential in many applications like speech recognition, drug discovery, image classification, and object detection. Neural network models are inspired by biological neural networks, but they are optimized to perform m achine learning tasks on digital computers. The proposed work explores the possibilities of using living neural networks in vitro as basic computational elements for machine learning applications. A new supervised STDP-based learning algorithm is proposed in this work, which considers neuron engineering constrains. A 74.7% accuracy is achieved on the MNIST benchmark for handwritten digit recognition.
Lifelong learning capabilities are crucial for artificial autonomous agents operating on real-world data, which is typically non-stationary and temporally correlated. In this work, we demonstrate that dynamically grown networks outperform static netw orks in incremental learning scenarios, even when bounded by the same amount of memory in both cases. Learning is unsupervised in our models, a condition that additionally makes training more challenging whilst increasing the realism of the study, since humans are able to learn without dense manual annotation. Our results on artificial neural networks reinforce that structural plasticity constitutes effective prevention against catastrophic forgetting in non-stationary environments, as well as empirically supporting the importance of neurogenesis in the mammalian brain.
Neuromorphic computing systems such as DYNAPs and Loihi have recently been introduced to the computing community to improve performance and energy efficiency of machine learning programs, especially those that are implemented using Spiking Neural Net work (SNN). The role of a system software for neuromorphic systems is to cluster a large machine learning model (e.g., with many neurons and synapses) and map these clusters to the computing resources of the hardware. In this work, we formulate the energy consumption of a neuromorphic hardware, considering the power consumed by neurons and synapses, and the energy consumed in communicating spikes on the interconnect. Based on such formulation, we first evaluate the role of a system software in managing the energy consumption of neuromorphic systems. Next, we formulate a simple heuristic-based mapping approach to place the neurons and synapses onto the computing resources to reduce energy consumption. We evaluate our approach with 10 machine learning applications and demonstrate that the proposed mapping approach leads to a significant reduction of energy consumption of neuromorphic computing systems.
We analyze several recent unsupervised constituency parsing models, which are tuned with respect to the parsing $F_1$ score on the Wall Street Journal (WSJ) development set (1,700 sentences). We introduce strong baselines for them, by training an exi sting supervised parsing model (Kitaev and Klein, 2018) on the same labeled examples they access. When training on the 1,700 examples, or even when using only 50 examples for training and 5 for development, such a few-shot parsing approach can outperform all the unsupervised parsing methods by a significant margin. Few-shot parsing can be further improved by a simple data augmentation method and self-training. This suggests that, in order to arrive at fair conclusions, we should carefully consider the amount of labeled data used for model development. We propose two protocols for future work on unsupervised parsing: (i) use fully unsupervised criteria for hyperparameter tuning and model selection; (ii) use as few labeled examples as possible for model development, and compare to few-shot parsing trained on the same labeled examples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا