ترغب بنشر مسار تعليمي؟ اضغط هنا

We show that in a one-dimensional translationally invariant tight binding chain, non-dispersing wave packets can in general be realized as Floquet eigenstates -- or linear combinations thereof -- using a spatially inhomogeneous drive, which can be as simple as modulation on a single site. The recurrence time of these wave packets (their round trip time) locks in at rational ratios $sT/r$ of the driving period $T$, where $s,r$ are co-prime integers. Wave packets of different $s/r$ can co-exist under the same drive, yet travel at different speeds. They retain their spatial compactness either infinitely ($s/r=1$) or over long time ($s/r eq 1$). Discrete time translation symmetry is manifestly broken for $s eq 1$, reminiscent of Floquet time crystals. We further demonstrate how to reverse-engineer a drive protocol to reproduce a target Floquet micromotion, such as the free propagation of a wave packet, as if coming from a strictly linear energy spectrum. The variety of control schemes open up a new avenue for Floquet engineering in quantum information sciences.
A powerful perspective in understanding non-equilibrium quantum dynamics is through the time evolution of its entanglement content. Yet apart from a few guiding principles for the entanglement entropy, to date, not much else is known about the refine d characters of entanglement propagation. Here, we unveil signatures of the entanglement evolving and information propagation out-of-equilibrium, from the view of entanglement Hamiltonian. As a prototypical example, we study quantum quench dynamics of a one-dimensional Bose-Hubbard model by means of time-dependent density-matrix renormalization group simulation. Before reaching equilibration, it is found that a current operator emerges in entanglement Hamiltonian, implying that entanglement spreading is carried by particle flow. In the long-time limit subsystem enters a steady phase, evidenced by the dynamic convergence of the entanglement Hamiltonian to the expectation of a thermal ensemble. Importantly, entanglement temperature of steady state is spatially independent, which provides an intuitive trait of equilibrium. We demonstrate that these features are consistent with predictions from conformal field theory. These findings not only provide crucial information on how equilibrium statistical mechanics emerges in many-body dynamics, but also add a tool to exploring quantum dynamics from perspective of entanglement Hamiltonian.
We show that the Hilbert space spanned by a continuously parametrized wavefunction family---i.e., a quantum state manifold---is dominated by a subspace, onto which all member states have close to unity projection weight. Its characteristic dimensiona lity $D_P$ is much smaller than the full Hilbert space dimension, and is equivalent to a statistical complexity measure $e^{S_2}$, where $S_2$ is the $2^{nd}$ Renyi entropy of the manifold. In the thermodynamic limit, $D_P$ closely approximates the quantum geometric volume of the manifold under the Fubini-Study metric, revealing an intriguing connection between information and geometry. This connection persists in compact manifolds such as a twisted boundary phase, where the corresponding geometric circumference is lower bounded by a term proportional to its topological index, reminiscent of entanglement entropy.
We show that the topological index of a wavefunction, computed in the space of twisted boundary phases, is preserved under Hilbert space truncation, provided the truncated state remains normalizable. If truncation affects the boundary condition of th e resulting state, the invariant index may acquire a different physical interpretation. If the index is symmetry protected, the truncation should preserve the protecting symmetry. We discuss implications of this invariance using paradigmatic integer and fractional Chern insulators, $Z_2$ topological insulators, and Spin-$1$ AKLT and Heisenberg chains, as well as its relation with the notion of bulk entanglement. As a possible application, we propose a partial quantum tomography scheme from which the topological index of a generic multi-component wavefunction can be extracted by measuring only a small subset of wavefunction components, equivalent to the measurement of a bulk entanglement topological index.
A sudden quantum quench of a Bloch band from one topological phase toward another has been shown to exhibit an intimate connection with the notion of a dynamical quantum phase transition (DQPT), where the returning probability of the quenched state t o the initial state---i.e. the Loschmidt echo---vanishes at critical times ${t^{*}}$. Analytical results so far are limited to two-band models, leaving the exact relation between topology and DQPT unclear. In this work, we show that for a general multi-band system, a robust DQPT relies on the existence of nodes (i.e. zeros) in the wavefunction overlap between the initial band and the post-quench energy eigenstates. These nodes are topologically protected if the two participating wavefunctions have distinctive topological indices. We demonstrate these ideas in detail for both one and two spatial dimensions using a three-band generalized Hofstadter model. We also discuss possible experimental observations.
Majorana fermions are rising as a promising key component in quantum computation. While the prevalent approach is to use a quadratic (i.e. non-interacting) Majorana Hamiltonian, when expressed in terms of Dirac fermions, generically the Hamiltonian i nvolves interaction terms. Here we focus on the possible pair correlations in a simple model system. We study a model of Majorana fermions coupled to a boson mode and show that the anomalous correlator between different Majorana fermions, located at opposite ends of a topological wire, exhibits odd frequency behavior. It is stabilized when the coupling strength $g$ is above a critical value $g_c$. We use both, conventional diagrammatic theory and a functional integral approach, to derive the gap equation, the critical temperature, the gap function, the critical coupling, and a Ginzburg-Landau theory allowing to discuss a possible subleading admixture of even-frequency pairing.
Two-dimensional topological phases are characterized by TKNN integers, which classify Bloch energy bands or groups of Bloch bands. However, quantization does not survive thermal averaging or dephasing to mixed states. We show that using Uhlmanns para llel transport for density matrices (Rep. Math. Phys. 24, 229 (1986)), an integer classification of topological phases can be defined for a finite generalized temperature $T$ or dephasing Lindbladian. This scheme reduces to the familiar TKNN classification for $T<T_{{rm c},1}$, becomes trivial for $T>T_{{rm c},2}$, and exhibits a `gapless intermediate regime where topological indices are not well-defined. We demonstrate these ideas in detail, applying them to Haldanes honeycomb lattice model and the Bernevig-Hughes-Zhang model, and we comment on their generalization to multi-band Chern insulators.
Weyl Semimetals (WS) are a new class of Dirac-type materials exhibiting a phase with bulk energy nodes and an associated vanishing density of states (DOS). We investigate the stability of this nodal DOS suppression in the presence of local impurities and consider whether or not such a suppression can be lifted by impurity-induced resonances. We find that while a scalar (chemical potential type) impurity can always induce a resonance at arbitrary energy and hence lift the DOS suppression at Dirac/Weyl nodes, for many other impurity types (e.g. magnetic or orbital-mixing), resonances are forbidden in a wide range of energy. We investigate a $4$-band tight-binding model of WS adapted from a physical heterostructure construction due to Burkov, Hook, and Balents, and represent a local impurity potential by a strength $g$ as well as a matrix structure $Lambda$. A general framework is developed to analyze this resonance dichotomy and make connection with the phase shift picture in scattering theory, as well as to determine the relation between resonance energy and impurity strength $g$. A complete classification of impurities based on $Lambda$, based on their effect on nodal DOS suppression, is tabulated. We also discuss the differences between continuum and lattice approaches.
We investigate the effects of bulk impurities on the electronic spectrum of Weyl semimetals, a recently identified class of Dirac-type materials. Using a $T$-matrix approach, we study resonant scattering due to a localized impurity in tight bindi
We study Haldanes honeycomb lattice model and a bilayer generalization thereof from the perspective of edge states, entanglement spectra, and Wannier function behavior. For the monolayer model, we obtain the zigzag edge states analytically, and ident ify the edge state crossing point $k_c$ with where the $f = 1/2$ entanglement occupancy and the half-odd-integer Wannier centers occur. A continuous interpolation between the entanglement states and the Wannier states is introduced. We then construct a bilayer model by Bernal stacking two monolayers coupled by interlayer hopping. We analyze a particular limit of this model where an extended symmetry, related to inversion, is present. The band topology then reveals a break-down of the correspondence between edge and entanglement spectrum, which is analyzed in detail, and compared with the inversion-symmetric Z2 topological insulators which show a similar phenomenon.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا