ترغب بنشر مسار تعليمي؟ اضغط هنا

Edge States, Entanglement Spectra, and Wannier Functions in Haldanes Honeycomb Lattice Model and its Bilayer Generalization

131   0   0.0 ( 0 )
 نشر من قبل Zhoushen Huang
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study Haldanes honeycomb lattice model and a bilayer generalization thereof from the perspective of edge states, entanglement spectra, and Wannier function behavior. For the monolayer model, we obtain the zigzag edge states analytically, and identify the edge state crossing point $k_c$ with where the $f = 1/2$ entanglement occupancy and the half-odd-integer Wannier centers occur. A continuous interpolation between the entanglement states and the Wannier states is introduced. We then construct a bilayer model by Bernal stacking two monolayers coupled by interlayer hopping. We analyze a particular limit of this model where an extended symmetry, related to inversion, is present. The band topology then reveals a break-down of the correspondence between edge and entanglement spectrum, which is analyzed in detail, and compared with the inversion-symmetric Z2 topological insulators which show a similar phenomenon.

قيم البحث

اقرأ أيضاً

84 - Igor N.Karnaukhov 2019
e provide a detailed analysis of a topological structure of a fermion spectrum in the Hofstadter model with different hopping integrals along the $x,y,z$-links ($t_x=t, t_y=t_z=1$), defined on a honeycomb lattice. We have shown that the chiral gaples s edge modes are described in the framework of the generalized Kitaev chain formalism, which makes it possible to calculate the Hall conductance of subbands for different filling and an arbitrary magnetic flux $phi$. At half-filling the gap in the center of the fermion spectrum opens for $t>t_c=2^{phi}$, a quantum phase transition in the 2D-topological insulator state is realized at $t_c$. The phase state is characterized by zero energy Majorana states localized at the boundaries. Taking into account the on-site Coulomb repulsion $U$ (where $U<<1$), the criterion for the stability of a topological insulator state is calculated at $t<<1$, $t sim U$. Thus, in the case of $ U > 4Delta $, the topological insulator state, which is determined by chiral gapless edge modes in the gap $Delta$, is destroyed.
Li and Haldane conjectured and numerically substantiated that the entanglement spectrum of the reduced density matrix of ground-states of time-reversal breaking topological phases (fractional quantum Hall states) contains information about the counti ng of their edge modes when the ground-state is cut in two spatially distinct regions and one of the regions is traced out. We analytically substantiate this conjecture for a series of FQH states defined as unique zero modes of pseudopotential Hamiltonians by finding a one to one map between the thermodynamic limit counting of two different entanglement spectra: the particle entanglement spectrum, whose counting of eigenvalues for each good quantum number is identical (up to accidental degeneracies) to the counting of bulk quasiholes, and the orbital entanglement spectrum (the Li-Haldane spectrum). As the particle entanglement spectrum is related to bulk quasihole physics and the orbital entanglement spectrum is related to edge physics, our map can be thought of as a mathematically sound microscopic description of bulk-edge correspondence in entanglement spectra. By using a set of clustering operators which have their origin in conformal field theory (CFT) operator expansions, we show that the counting of the orbital entanglement spectrum eigenvalues in the thermodynamic limit must be identical to the counting of quasiholes in the bulk. The latter equals the counting of edge modes at a hard-wall boundary placed on the sample. Moreover, we show this to be true even for CFT states which are likely bulk gapless, such as the Gaffnian wavefunction.
Frustrated bilayer quantum magnets have attracted attention as flat-band spin systems with unconventional thermodynamic properties. We study the low-temperature properties of a frustrated honeycomb-lattice bilayer spin-$frac{1}{2}$ isotropic ($XXX$) Heisenberg antiferromagnet in a magnetic field by means of an effective low-energy theory using exact diagonalizations and quantum Monte Carlo simulations. Our main focus is on the magnetization curve and the temperature dependence of the specific heat indicating a finite-temperature phase transition in high magnetic fields.
Motivated by the observation of a disordered spin ground state in the $S=3/2$ material Bi$_3$Mn$_4$O$_{12}$NO$_3$, we study the ground state properties and excitation spectra of the $S=3/2$ (and for comparison $S=1/2$) bilayer Heisenberg model on the honeycomb lattice, with and without frustrating further neighbor interactions. We use series expansions around the Neel state to calculate properties of the magnetically ordered phase. Furthermore, series expansions in $1/lambda=J_1/J_{perp}$, where $J_1$ is an in-plane exchange constant and $J_perp$ is the exchange constant between the layers are used to study properties of the spin singlet phase. For the unfrustrated case, our results for the phase transitions are in very good agreement with recent Quantum Monte Carlo studies. We also obtain the excitation spectra in the disordered phase and study the change in the critical $lambda$ when frustrating exchange interactions are added to the $S=3/2$ system and find a rapid suppression of the ordered phase with frustration. Implications for the material Bi$_3$Mn$_4$O$_{12}$NO$_3$ are discussed.
130 - Eva Zurek , Ove Jepsen , 2005
Within this paper we outline a method able to generate truly minimal basis sets which describe either a group of bands, a band, or even just the occupied part of a band accurately. These basis sets are the so-called NMTOs, Muffin Tin Orbitals of orde r N. For an isolated set of bands, symmetrical orthonormalization of the NMTOs yields a set of Wannier functions which are atom-centered and localized by construction. They are not necessarily maximally localized, but may be transformed into those Wannier functions. For bands which overlap others, Wannier-like functions can be generated. It is shown that NMTOs give a chemical understanding of an extended system. In particular, orbitals for the pi and sigma bands in an insulator, boron nitride, and a semi-metal, graphite, will be considered. In addition, we illustrate that it is possible to obtain Wannier-like functions for only the occupied states in a metallic system by generating NMTOs for cesium. Finally, we visualize the pressure-induced s to d transition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا