ﻻ يوجد ملخص باللغة العربية
We show that the Hilbert space spanned by a continuously parametrized wavefunction family---i.e., a quantum state manifold---is dominated by a subspace, onto which all member states have close to unity projection weight. Its characteristic dimensionality $D_P$ is much smaller than the full Hilbert space dimension, and is equivalent to a statistical complexity measure $e^{S_2}$, where $S_2$ is the $2^{nd}$ Renyi entropy of the manifold. In the thermodynamic limit, $D_P$ closely approximates the quantum geometric volume of the manifold under the Fubini-Study metric, revealing an intriguing connection between information and geometry. This connection persists in compact manifolds such as a twisted boundary phase, where the corresponding geometric circumference is lower bounded by a term proportional to its topological index, reminiscent of entanglement entropy.
We study the Killing vectors of the quantum ground-state manifold of a parameter-dependent Hamiltonian. We find that the manifold may have symmetries that are not visible at the level of the Hamiltonian and that different quantum phases of matter exh
Quantum Monte Carlo simulations, while being efficient for bosons, suffer from the negative sign problem when applied to fermions - causing an exponential increase of the computing time with the number of particles. A polynomial time solution to the
In a recent work [D. Malpetti and T. Roscilde, arXiv:1605.04223] we have shown that in quantum many-body systems at finite temperature, two-point correlations can be formally separated into a thermal part, and a quantum part -- and that generically q
Equilibrium statistical mechanics rests on the assumption of ergodic dynamics of a system modulo the conservation laws of local observables: extremization of entropy immediately gives Gibbs ensemble (GE) for energy conserving systems and a generalize
The quantum fluctuations of the entropy production for fermionic systems in the Landauer-Buttiker non-equilibrium steady state are investigated. The probability distribution, governing these fluctuations, is explicitly derived by means of quantum fie