ترغب بنشر مسار تعليمي؟ اضغط هنا

51 - Jun Li , Zhihuang Luo , Tao Xin 2018
Quantum pseudorandomness, also known as unitary designs, comprise a powerful resource for quantum computation and quantum engineering. While it is known in theory that pseudorandom unitary operators can be constructed efficiently, realizing these obj ects in realistic physical systems can be a challenging task. In this work, we study quantum pseudorandomness generation on a 12-spin nuclear magnetic resonance system. The experimental process is based on the recently proposed design Hamiltonian approach, which has the merit of being significantly more efficient than previous protocols. By applying random refocusing sequences to the experimental system we create a design Hamiltonian the dynamics of which quickly forms unitary designs. We then use multiple-quantum techniques to measure spreading of quantum coherences over systems degrees of freedom, and so to probe the growth of quantum pseudorandomness. The measured multiple-quantum coherence spectra indicate that substantial quantum pseudorandomness have been achieved.
The Sachdev-Ye-Kitaev (SYK) model incorporates rich physics, ranging from exotic non-Fermi liquid states without quasiparticle excitations, to holographic duality and quantum chaos. However, its experimental realization remains a daunting challenge d ue to various unnatural ingredients of the SYK Hamiltonian such as its strong randomness and fully nonlocal fermion interaction. At present, constructing such a nonlocal Hamiltonian and exploring its dynamics is best through digital quantum simulation, where state-of-the-art techniques can already handle a moderate number of qubits. Here we demonstrate a first step towards simulation of the SYK model on a nuclear-spin-chain simulator. We observed the fermion paring instability of the non-Fermi liquid state and the chaotic-nonchaotic transition at simulated temperatures, as was predicted by previous theories. As the realization of the SYK model in practice, our experiment opens a new avenue towards investigating the key features of non-Fermi liquid states, as well as the quantum chaotic systems and the AdS/CFT duality.
Quantum state tomography is an indispensable but costly part of many quantum experiments. Typically, it requires measurements to be carried in a number of different settings on a fixed experimental setup. The collected data is often informationally o vercomplete, with the amount of information redundancy depending on the particular set of measurement settings chosen. This raises a question about how should one optimally take data so that the number of measurement settings necessary can be reduced. Here, we cast this problem in terms of integer programming. For a given experimental setup, standard integer programming algorithms allow us to find the minimum set of readout operations that can realize a target tomographic task. We apply the method to certain basic and practical state tomographic problems in nuclear magnetic resonance experimental systems. The results show that, considerably less readout operations can be found using our technique than it was by using the previous greedy search strategy. Therefore, our method could be helpful for simplifying measurement schemes so as to minimize the experimental effort.
108 - Zhihuang Luo , Jun Li , Zhaokai Li 2016
The modern conception of phases of matter has undergone tremendous developments since the first observation of topologically ordered states in fractional quantum Hall systems in the 1980s. In this paper, we explore the question: How much detail of th e physics of topological orders can in principle be observed using state of the art technologies? We find that using surprisingly little data, namely the toric code Hamiltonian in the presence of generic disorders and detuning from its exactly solvable point, the modular matrices -- characterizing anyonic statistics that are some of the most fundamental finger prints of topological orders -- can be reconstructed with very good accuracy solely by experimental means. This is a first experimental realization of these fundamental signatures of a topological order, a test of their robustness against perturbations, and a proof of principle -- that current technologies have attained the precision to identify phases of matter and, as such, probe an extended region of phase space around the soluble point before its breakdown. Given the special role of anyonic statistics in quantum computation, our work promises myriad applications both in probing and realistically harnessing these exotic phases of matter.
103 - Zhihuang Luo , Jun Li , Zhaokai Li 2016
Topological orders are a class of exotic states of matter characterized by patterns of long-range entanglement. Certain topologically ordered systems are proposed as potential realization of fault-tolerant quantum computation. Topological orders can arise in two-dimensional spin-lattice models. In this paper, we engineer a time-dependent Hamiltonian to prepare a topologically ordered state through adiabatic evolution. The other sectors in the degenerate ground-state space of the model are obtained by applying nontrivial operations corresponding to closed string operators. Each sector is highly entangled, as shown from the completely reconstructed density matrices. This paves the way towards exploring the properties of topological orders and the application of topological orders in topological quantum memory.
60 - Zhihuang Luo , Chao Lei , Jun Li 2016
Topologically ordered phase has emerged as one of most exciting concepts that not only broadens our understanding of phases of matter, but also has been found to have potential application in fault-tolerant quantum computation. The direct measurement of topological properties, however, is still a challenge especially in interacting quantum system. Here we realize one-dimensional Heisenberg spin chains using nuclear magnetic resonance simulators and observe the interaction-induced topological transitions, where Berry curvature in the parameter space of Hamiltonian is probed by means of dynamical response and then the first Chern number is extracted by integrating the curvature over the closed surface. The utilized experimental method provides a powerful means to explore topological phenomena in quantum systems with many-body interactions.
116 - Jun Li , Dawei Lu , Zhihuang Luo 2014
Precisely characterizing and controlling realistic open quantum systems is one of the most challenging and exciting frontiers in quantum sciences and technologies. In this Letter, we present methods of approximately computing reachable sets for coher ently controlled dissipative systems, which is very useful for assessing control performances. We apply this to a two-qubit nuclear magnetic resonance spin system and implement some tasks of quantum control in open systems at a near optimal performance in view of purity: e.g., increasing polarization and preparing pseudo-pure states. Our work shows interesting and promising applications of environment-assisted quantum dynamics.
Topological orders are exotic phases of matter existing in strongly correlated quantum systems, which are beyond the usual symmetry description and cannot be distinguished by local order parameters. Here we report an experimental quantum simulation o f the Wen-plaquette spin model with different topological orders in a nuclear magnetic resonance system, and observe the adiabatic transition between two $Z_2$ topological orders through a spin-polarized phase by measuring the nonlocal closed-string (Wilson loop) operator. Moreover, we also measure the entanglement properties of the topological orders. This work confirms the adiabatic method for preparing topologically ordered states and provides an experimental tool for further studies of complex quantum systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا