ﻻ يوجد ملخص باللغة العربية
Precisely characterizing and controlling realistic open quantum systems is one of the most challenging and exciting frontiers in quantum sciences and technologies. In this Letter, we present methods of approximately computing reachable sets for coherently controlled dissipative systems, which is very useful for assessing control performances. We apply this to a two-qubit nuclear magnetic resonance spin system and implement some tasks of quantum control in open systems at a near optimal performance in view of purity: e.g., increasing polarization and preparing pseudo-pure states. Our work shows interesting and promising applications of environment-assisted quantum dynamics.
We investigate a possibility to generate non-classical states in light-matter coupled noisy quantum systems, namely the anisotropic Rabi and Dicke models. In these hybrid quantum systems a competing influence of coherent internal dynamics and environ
Pure-state inverse engineering among the schemes of shortcuts to adiabaticity is a widespread utility in applications to quantum computation and quantum simulation. While in principle it can realise the fast control of quantum systems with high fidel
We extend standard Markovian open quantum systems (quantum channels) by allowing for Hamiltonian controls and elucidate their geometry in terms of Lie semigroups. For standard dissipative interactions with the environment and different coherent contr
We present a numerical method to approximate the long-time asymptotic solution $rho_infty(t)$ to the Lindblad master equation for an open quantum system under the influence of an external drive. The proposed scheme uses perturbation theory to rank in
We discuss the numerical solution methods available when solving for the steady-state density matrix of a time-independent open quantum optical system, where the system operators are expressed in a suitable basis representation as sparse matrices. In