ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Simulation of the Non-Fermi-Liquid State of Sachdev-Ye-Kitaev Model

116   0   0.0 ( 0 )
 نشر من قبل Dawei Lu
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Sachdev-Ye-Kitaev (SYK) model incorporates rich physics, ranging from exotic non-Fermi liquid states without quasiparticle excitations, to holographic duality and quantum chaos. However, its experimental realization remains a daunting challenge due to various unnatural ingredients of the SYK Hamiltonian such as its strong randomness and fully nonlocal fermion interaction. At present, constructing such a nonlocal Hamiltonian and exploring its dynamics is best through digital quantum simulation, where state-of-the-art techniques can already handle a moderate number of qubits. Here we demonstrate a first step towards simulation of the SYK model on a nuclear-spin-chain simulator. We observed the fermion paring instability of the non-Fermi liquid state and the chaotic-nonchaotic transition at simulated temperatures, as was predicted by previous theories. As the realization of the SYK model in practice, our experiment opens a new avenue towards investigating the key features of non-Fermi liquid states, as well as the quantum chaotic systems and the AdS/CFT duality.



قيم البحث

اقرأ أيضاً

We study a simplified version of the Sachdev-Ye-Kitaev (SYK) model with real interactions by exact diagonalization. Instead of satisfying a continuous Gaussian distribution, the interaction strengths are assumed to be chosen from discrete values with a finite separation. A quantum phase transition from a chaotic state to an integrable state is observed by increasing the discrete separation. Below the critical value, the discrete model can well reproduce various physical quantities of the original SYK model, including the volume law of the ground-state entanglement, level distribution, thermodynamic entropy, and out-of-time-order correlation (OTOC) functions. For systems of size up to $N=20$, we find that the transition point increases with system size, indicating that a relatively weak randomness of interaction can stabilize the chaotic phase. Our findings significantly relax the stringent conditions for the realization of SYK model, and can reduce the complexity of various experimental proposals down to realistic ranges.
We study spectral and thermodynamic properties of the Sachdev-Ye-Kitaev model, a variant of the $k$-body embedded random ensembles studied for several decades in the context of nuclear physics and quantum chaos. We show analytically that the fourth a nd sixth order energy cumulants vanish in the limit of large number of particles $N to infty$ which is consistent with a Gaussian spectral density. However, for finite $N$, the tail of the average spectral density is well approximated by a semi-circle law. The specific heat coefficient, determined numerically from the low temperature behavior of the partition function, is consistent with the value obtained by previous analytical calculations. For energy scales of the order of the mean level spacing we show that level statistics are well described by random matrix theory. Due to the underlying Clifford algebra of the model, the universality class of the spectral correlations depends on $N$. For larger energy separations we identify an energy scale that grows with $N$, reminiscent of the Thouless energy in mesoscopic physics, where deviations from random matrix theory are observed. Our results are a further confirmation that the Sachdev-Ye-Kitaev model is quantum chaotic for all time scales. According to recent claims in the literature, this is an expected feature in field theories with a gravity-dual.
We describe numerous properties of the Sachdev-Ye-Kitaev model for complex fermions with $Ngg 1$ flavors and a global U(1) charge. We provide a general definition of the charge in the $(G,Sigma)$ formalism, and compute its universal relation to the i nfrared asymmetry of the Green function. The same relation is obtained by a renormalization theory. The conserved charge contributes a compact scalar field to the effective action, from which we derive the many-body density of states and extract the charge compressibility. We compute the latter via three distinct numerical methods and obtain consistent results. Finally, we present a two dimensional bulk picture with free Dirac fermions for the zero temperature entropy.
324 - Oguzhan Can , Marcel Franz 2019
We propose a simple solvable variant of the Sachdev-Ye-Kitaev (SYK) model which displays a quantum phase transition from a fast-scrambling non-Fermi liquid to disordered Fermi liquid. Like the canonical SYK model, our variant involves a single specie s of Majorana fermions connected by all-to-all random four-fermion interactions. The phase transition is driven by a random two-fermion term added to the Hamiltonian whose structure is inspired by proposed solid-state realizations of the SYK model. Analytic expressions for the saddle point solutions at large number $N$ of fermions are obtained and show a characteristic scale-invariant $sim |omega|^{-1/2}$ behavior of the spectral function below the transition which is replaced by a $sim |omega|^{-1/3}$ singularity exactly at the critical point. These results are confirmed by numerical solutions of the saddle point equations and discussed in the broader context of the field.
We show analytically that the spectral density of the $q$-body Sachdeev-Ye-Kitaev (SYK) model agrees with that of Q-Hermite polynomials with Q a non-trivial function of $q ge 2$ and the number of Majorana fermions $N gg 1$. Numerical results, obtaine d by exact diagonalization, are in excellent agreement with the analytical spectral density even for relatively small $N sim 8$. For $N gg 1$ and not close to the edge of the spectrum, we find the macroscopic spectral density simplifies to $rho(E) sim exp[2arcsin^2(E/E_0)/log eta]$, where $eta$ is the suppression factor of the contribution of intersecting Wick contractions relative to nested contractions. This spectral density reproduces the known result for the free energy in the large $q$ and $N$ limit. In the infrared region, where the SYK model is believed to have a gravity-dual, the spectral density is given by $rho(E) sim sinh[2pi sqrt 2 sqrt{(1-E/E_0)/(-log eta)}]$. It therefore has a square-root edge, as in random matrix ensembles, followed by an exponential growth, a distinctive feature of black holes and also of low energy nuclear excitations. Results for level-statistics in this region confirm the agreement with random matrix theory. Physically this is a signature that, for sufficiently long times, the SYK model and its gravity dual evolve to a fully ergodic state whose dynamics only depends on the global symmetry of the system. Our results strongly suggest that random matrix correlations are a universal feature of quantum black holes and that the SYK model, combined with holography, may be relevant to model certain aspects of the nuclear dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا