ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental Preparation of Topologically Ordered States via Adiabatic Evolution

104   0   0.0 ( 0 )
 نشر من قبل Zhihuang Luo
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Topological orders are a class of exotic states of matter characterized by patterns of long-range entanglement. Certain topologically ordered systems are proposed as potential realization of fault-tolerant quantum computation. Topological orders can arise in two-dimensional spin-lattice models. In this paper, we engineer a time-dependent Hamiltonian to prepare a topologically ordered state through adiabatic evolution. The other sectors in the degenerate ground-state space of the model are obtained by applying nontrivial operations corresponding to closed string operators. Each sector is highly entangled, as shown from the completely reconstructed density matrices. This paves the way towards exploring the properties of topological orders and the application of topological orders in topological quantum memory.



قيم البحث

اقرأ أيضاً

The discovery of topological order has revolutionized the understanding of quantum matter in modern physics and provided the theoretical foundation for many quantum error correcting codes. Realizing topologically ordered states has proven to be extre mely challenging in both condensed matter and synthetic quantum systems. Here, we prepare the ground state of the toric code Hamiltonian using an efficient quantum circuit on a superconducting quantum processor. We measure a topological entanglement entropy near the expected value of $ln2$, and simulate anyon interferometry to extract the braiding statistics of the emergent excitations. Furthermore, we investigate key aspects of the surface code, including logical state injection and the decay of the non-local order parameter. Our results demonstrate the potential for quantum processors to provide key insights into topological quantum matter and quantum error correction.
It has recently been established that cluster-like states -- states that are in the same symmetry-protected topological phase as the cluster state -- provide a family of resource states that can be utilized for Measurement-Based Quantum Computation. In this work, we ask whether it is possible to prepare cluster-like states in finite time without breaking the symmetry protecting the resource state. Such a symmetry-preserving protocol would benefit from topological protection to errors in the preparation. We answer this question in the positive by providing a Hamiltonian in one higher dimension whose finite-time evolution is a unitary that acts trivially in the bulk, but pumps the desired cluster state to the boundary. Examples are given for both the 1D cluster state protected by a global symmetry, and various 2D cluster states protected by subsystem symmetries. We show that even if unwanted symmetric perturbations are present in the driving Hamiltonian, projective measurements in the bulk along with post-selection is sufficient to recover a cluster-like state. For a resource state of size $N$, failure to prepare the state is negligible if the size of the perturbations are much smaller than $N^{-1/2}$.
We define topological time crystals, a dynamical phase of periodically driven quantum many-body systems capturing the coexistence of topological order with the spontaneous breaking of discrete time-translation symmetry. We show that many-body localiz ation can stabilize this phase against generic perturbations and establish some of its key features and signatures. We link topological and ordinary time crystals through three complementary perspectives: higher-form symmetries, quantum error-correcting codes, and a holographic correspondence. We also propose an experimental realization of a surface-code-based topological time crystal for the Google Sycamore processor.
Topological orders are exotic phases of matter existing in strongly correlated quantum systems, which are beyond the usual symmetry description and cannot be distinguished by local order parameters. Here we report an experimental quantum simulation o f the Wen-plaquette spin model with different topological orders in a nuclear magnetic resonance system, and observe the adiabatic transition between two $Z_2$ topological orders through a spin-polarized phase by measuring the nonlocal closed-string (Wilson loop) operator. Moreover, we also measure the entanglement properties of the topological orders. This work confirms the adiabatic method for preparing topologically ordered states and provides an experimental tool for further studies of complex quantum systems.
Ultra-cold atomic gases are unique in terms of the degree of controllability, both for internal and external degrees of freedom. This makes it possible to use them for the study of complex quantum many-body phenomena. However in many scenarios, the p rerequisite condition of faithfully preparing a desired quantum state despite decoherence and system imperfections is not always adequately met. To path the way to a specific target state, we explore quantum optimal control framework based on Bayesian optimization. The probabilistic modeling and broad exploration aspects of Bayesian optimization is particularly suitable for quantum experiments where data acquisition can be expensive. Using numerical simulations for the superfluid to Mott-insulator transition for bosons in a lattice as well for the formation of Rydberg crystals as explicit examples, we demonstrate that Bayesian optimization is capable of finding better control solutions with regards to finite and noisy data compared to existing methods of optimal control.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا