ترغب بنشر مسار تعليمي؟ اضغط هنا

We explore a class of random tensor network models with ``stabilizer local tensors which we name Random Stabilizer Tensor Networks (RSTNs). For RSTNs defined on a two-dimensional square lattice, we perform extensive numerical studies of entanglement phase transitions between volume-law and area-law entangled phases of the one-dimensional boundary states. These transitions occur when either (a) the bond dimension $D$ of the constituent tensors is varied, or (b) the tensor network is subject to random breaking of bulk bonds, implemented by forced measurements. In the absence of broken bonds, we find that the RSTN supports a volume-law entangled boundary state with bond dimension $Dgeq3$ where $D$ is a prime number, and an area-law entangled boundary state for $D=2$. Upon breaking bonds at random in the bulk with probability $p$, there exists a critical measurement rate $p_c$ for each $Dgeq 3$ above which the boundary state becomes area-law entangled. To explore the conformal invariance at these entanglement transitions for different prime $D$, we consider tensor networks on a finite rectangular geometry with a variety of boundary conditions, and extract universal operator scaling dimensions via extensive numerical calculations of the entanglement entropy, mutual information and mutual negativity at their respective critical points. Our results at large $D$ approach known universal data of percolation conformal field theory, while showing clear discrepancies at smaller $D$, suggesting a distinct entanglement transition universality class for each prime $D$. We further study universal entanglement properties in the volume-law phase and demonstrate quantitative agreement with the recently proposed description in terms of a directed polymer in a random environment.
Quantum many-body scars (QMBS) constitute a new quantum dynamical regime in which rare scarred eigenstates mediate weak ergodicity breaking. One open question is to understand the most general setting in which these states arise. In this work, we dev elop a generic construction that embeds a new class of QMBS, rainbow scars, into the spectrum of an arbitrary Hamiltonian. Unlike other examples of QMBS, rainbow scars display extensive bipartite entanglement entropy while retaining a simple entanglement structure. Specifically, the entanglement scaling is volume-law for a random bipartition, while scaling for a fine-tuned bipartition is sub-extensive. When internal symmetries are present, the construction leads to multiple, and even towers of rainbow scars revealed through distinctive non-thermal dynamics. To this end, we provide an experimental road map for realizing rainbow scar states in a Rydberg-atom quantum simulator, leading to coherent oscillations distinct from the strictly sub-volume-law QMBS previously realized in the same system.
We study a generalization of the two-dimensional transverse-field Ising model, combining both ferromagnetic and antiferromagnetic two-body interactions, that hosts exact global and local Z2 gauge symmetries. Using exact diagonalization and stochastic series expansion quantum Monte Carlo methods, we confirm the existence of the topological phase in line with previous theoretical predictions. Our simulation results show that the transition between the confined topological phase and the deconfined paramagnetic phase is of first-order, in contrast to the conventional Z2 lattice gauge model in which the transition maps onto that of the standard Ising model and is continuous. We further generalize the model by replacing the transverse field on the gauge spins with a ferromagnetic XX interaction while keeping the local gauge symmetry intact. We find that the Z2 topological phase remains stable, while the paramagnetic phase is replaced by a ferromagnetic phase. The topological-ferromagnetic quantum phase transition is also of first-order. For both models, we discuss the low-energy spinon and vison excitations of the topological phase and their avoided level crossings associated with the first-order quantum phase transitions.
We develop a general theory for two-dimensional (2D) anomalous Floquet higher-order topological superconductors (AFHOTSC), which are dynamical Majorana-carrying phases of matter with no static counterpart. Despite the triviality of its bulk Floquet b ands, an AFHOTSC generically features the simultaneous presence of corner-localized Majorana modes at both zero and $pi/T$ quasi-energies, a phenomenon beyond the scope of any static topological band theory. We show that the key to AFHOTSC is its unavoidable singular behavior in the phase spectrum of the bulk time-evolution operator. By mapping such evolution-phase singularities to the stroboscopic boundary signatures, we classify all 2D AFHOTSCs that are protected by a rotation group symmetry in symmetry class D. We further extract a higher-order topological index for unambiguously predicting the presence of Floquet corner Majorana modes, which we confirm numerically. Our theory serves as a milestone towards a dynamical topological theory for Floquet superconducting systems.
We show that a class of $mathcal{PT}$ symmetric non-Hermitian Hamiltonians realizing the Yang-Lee edge singularity exhibits an entanglement transition in the long-time steady state evolved under the Hamiltonian. Such a transition is induced by a leve l crossing triggered by the critical point associated with the Yang-Lee singularity and hence is first-order in nature. At the transition, the entanglement entropy of the steady state jumps discontinuously from a volume-law to an area-law scaling. We exemplify this mechanism using a one-dimensional transverse field Ising model with additional imaginary fields, as well as the spin-1 Blume-Capel model and the three-state Potts model. We further make a connection to the forced-measurement induced entanglement transition in a Floquet non-unitary circuit subject to continuous measurements followed by post-selections. Our results demonstrate a new mechanism for entanglement transitions in non-Hermitian systems harboring a critical point.
We show that a $mathbb{Z}_3$ quantum double can be realized in an array of superconducting wires coupled via Josephson junctions. With a suitably chosen magnetic flux threading the system, the inter-wire Josephson couplings take the form of a complex Hadamard matrix, which possesses combinatorial gauge symmetry -- a local $mathbb{Z}_3$ symmetry involving permutations and shifts by $pm 2pi/3$ of the superconducting phases. The sign of the star potential resulting from the Josephson energy is inverted in this physical realization, leading to a massive degeneracy in the non-zero flux sectors. A dimerization pattern encoded in the capacitances of the array lifts up these degeneracies, resulting in a $mathbb{Z}_3$ topologically ordered state. Moreover, this dimerization pattern leads to a larger effective vison gap as compared to the canonical case with the usual (uninverted) star term. We further show that our model maps to a quantum three-state Potts model under a duality transformation. We argue, using a combination of bosonization and mean field theory, that altering the dimerization pattern of the capacitances leads to a transition from the $mathbb{Z}_3$ topological phase into a quantum XY-ordered phase. Our work highlights that combinatorial gauge symmetry can serve as a design principle to build quantum double models using systems with realistic interactions.
Controllable Rydberg atom arrays have provided new insights into fundamental properties of quantum matter both in and out of equilibrium. In this work, we study the effect of experimentally relevant positional disorder on Rydberg atoms trapped in a 2 D square lattice under anti-blockade (facilitation) conditions. We show that the facilitation conditions lead the connectivity graph of a particular subspace of the full Hilbert space to form a 2D Lieb lattice, which features a singular flat band. Remarkably, we find three distinct regimes as the disorder strength is varied: a critical regime, a delocalized but nonergodic regime, and a regime with a disorder-induced flat band. The critical regimes existence depends crucially upon the singular flat band in our model, and is absent in any 1D array or ladder system. We propose to use quench dynamics to probe the three different regimes experimentally.
Periodically-driven or Floquet systems can realize anomalous topological phenomena that do not exist in any equilibrium states of matter, whose classification and characterization require new theoretical ideas that are beyond the well-established par adigm of static topological phases. In this work, we provide a general framework to understand anomalous Floquet higher-order topological insulators (AFHOTIs), the classification of which has remained a challenging open question. In two dimensions (2D), such AFHOTIs are defined by their robust, symmetry-protected corner modes pinned at special quasienergies, even though all their Floquet bands feature trivial band topology. The corner-mode physics of an AFHOTI is found to be generically indicated by 3D Dirac/Weyl-like topological singularities living in the phase spectrum of the bulk time-evolution operator. Physically, such a phase-band singularity is essentially a footprint of the topological quantum criticality, which separates an AFHOTI from a trivial phase adiabatically connected to a static limit. Strikingly, these singularities feature unconventional dispersion relations that cannot be achieved on any static lattice in 3D, which, nevertheless, resemble the surface physics of 4D topological crystalline insulators. We establish the above higher-order bulk-boundary correspondence through a dimensional reduction technique, which also allows for a systematic classification of 2D AFHOTIs protected by point group symmetries. We demonstrate applications of our theory to two concrete, experimentally feasible models of AFHOTIs protected by $C_2$ and $D_4$ symmetries, respectively. Our work paves the way for a unified theory for classifying and characterizing Floquet topological matters.
We explore thermalization and quantum dynamics in a one-dimensional disordered SU(2)-symmetric Floquet model, where a many-body localized phase is prohibited by the non-abelian symmetry. Despite the absence of localization, we find an extended nonerg odic regime at strong disorder where the system exhibits nonthermal behaviors. In the strong disorder regime, the level spacing statistics exhibit neither a Wigner-Dyson nor a Poisson distribution, and the spectral form factor does not show a linear-in-time growth at early times characteristic of random matrix theory. The average entanglement entropy of the Floquet eigenstates is subthermal, although violating an area-law scaling with system sizes. We further compute the expectation value of local observables and find strong deviations from the eigenstate thermalization hypothesis. The infinite temperature spin autocorrelation function decays at long times as $t^{-beta}$ with $beta < 0.5$, indicating subdiffusive transport at strong disorders.
We extend the notion of fragile topology to periodically-driven systems. We demonstrate driving-induced fragile topology in two different models, namely, the Floquet honeycomb model and the Floquet $pi$-flux square-lattice model. In both cases, we di scover a rich phase diagram that includes Floquet fragile topological phases protected by crystalline rotation or mirror symmetries, Floquet Chern insulators, and trivial atomic phases, with distinct boundary features. Remarkably, the transitions between different phases can be feasibly achieved by simply tuning the driving amplitudes, which is a unique feature of driving-enabled topological phenomena. Moreover, corner-localized fractional charges are identified as a ``smoking-gun signal of fragile topology in our systems. Our work paves the way for studying and realizing fragile topology in Floquet systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا