ترغب بنشر مسار تعليمي؟ اضغط هنا

Localization and criticality in antiblockaded 2D Rydberg atom arrays

184   0   0.0 ( 0 )
 نشر من قبل Fangli Liu Mr.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Controllable Rydberg atom arrays have provided new insights into fundamental properties of quantum matter both in and out of equilibrium. In this work, we study the effect of experimentally relevant positional disorder on Rydberg atoms trapped in a 2D square lattice under anti-blockade (facilitation) conditions. We show that the facilitation conditions lead the connectivity graph of a particular subspace of the full Hilbert space to form a 2D Lieb lattice, which features a singular flat band. Remarkably, we find three distinct regimes as the disorder strength is varied: a critical regime, a delocalized but nonergodic regime, and a regime with a disorder-induced flat band. The critical regimes existence depends crucially upon the singular flat band in our model, and is absent in any 1D array or ladder system. We propose to use quench dynamics to probe the three different regimes experimentally.

قيم البحث

اقرأ أيضاً

We find exponentially many exact quantum many-body scar states in a two-dimensional PXP model -- an effective model for a two-dimensional Rydberg atom array in the nearest-neighbor blockade regime. Such scar states are remarkably simple valence bond solids despite being at effectively infinite temperature, and thus strongly violate the eigenstate thermalization hypothesis. Given a particular boundary condition, such eigenstates have integer-valued energies. Moreover, certain charge-density-wave initial states give rise to strong oscillations in the Rydberg excitation density after a quantum quench and tower-like structures in their overlaps with eigenstates.
We propose a realization of mesonic and baryonic quasiparticle excitations in Rydberg atom arrays with programmable interactions. Recent experiments have shown that such systems possess a $mathbb{Z}_3$-ordered crystalline phase whose low-energy quasi particles are defects in the crystalline order. By engineering a $mathbb{Z}_3$-translational-symmetry breaking field on top of the Rydberg-blockaded Hamiltonian, we show that different types of defects experience confinement, and as a consequence form mesonic or baryonic quasiparticle excitations. We illustrate the formation of these quasiparticles by studying a quantum chiral clock model related to the Rydberg Hamiltonian. We then propose an experimental protocol involving out-of-equilibrium dynamics to directly probe the spectrum of the confined excitations. We show that the confined quasiparticle spectrum can limit quantum information spreading in this system. This proposal is readily applicable to current Rydberg experiments, and the method can be easily generalized to more complex confined excitations (e.g. `tetraquarks, `pentaquarks) in phases with $mathbb{Z}_q$ order for $q>3$.
Recent realization of a kinetically-constrained chain of Rydberg atoms by Bernien et al. [Nature 551, 579 (2017)] resulted in the observation of unusual revivals in the many-body quantum dynamics. In our previous work [arXiv:1711.03528] such dynamics was attributed to the existence of quantum scarred eigenstates in the many-body spectrum of the experimentally realized model. Here we present a detailed study of the eigenstate properties of the same model. We find that the majority of the eigenstates exhibit anomalous thermalization: the observable expectation values converge to their Gibbs ensemble values, but parametrically slower compared to the predictions of the eigenstate thermalization hypothesis (ETH). Amidst the thermalizing spectrum, we identify non-ergodic eigenstates that strongly violate the ETH, whose number grows polynomially with system size. Previously, the same eigenstates were identified via large overlaps with certain product states, and were used to explain the revivals observed in experiment. Here we find that these eigenstates, in addition to highly atypical expectation values of local observables, also exhibit sub-thermal entanglement entropy that scales logarithmically with the system size. Moreover, we identify an additional class of quantum scarred eigenstates, and discuss their manifestations in the dynamics starting from initial product states. We use forward scattering approximation to describe the structure and physical properties of quantum-scarred eigenstates. Finally, we discuss the stability of quantum scars to various perturbations. We observe that quantum scars remain robust when the introduced perturbation is compatible with the forward scattering approximation. In contrast, the perturbations which most efficiently destroy quantum scars also lead to the restoration of canonical thermalization.
We show that, in contrast to immediate intuition, Anderson localization of noninteracting particles induced by a disordered potential in free space can increase (i.e., the localization length can decrease) when the particle energy increases, for appr opriately tailored disorder correlations. We predict the effect in one, two, and three dimensions, and propose a simple method to observe it using ultracold atoms placed in optical disorder. The increase of localization with the particle energy can serve to discriminate quantum versus classical localization.
Optomechanical arrays are a promising future platform for studies of transport, many-body dynamics, quantum control and topological effects in systems of coupled photon and phonon modes. We introduce disordered optomechanical arrays, focusing on feat ures of Anderson localization of hybrid photon-phonon excitations. It turns out that these represent a unique disordered system, where basic parameters can be easily controlled by varying the frequency and the amplitude of an external laser field. We show that the two-species setting leads to a non-trivial frequency dependence of the localization length for intermediate laser intensities. This could serve as a convincing evidence of localization in a non-equilibrium dissipative situation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا