ترغب بنشر مسار تعليمي؟ اضغط هنا

Rainbow Scars: From Area to Volume Law

134   0   0.0 ( 0 )
 نشر من قبل Shenglong Xu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum many-body scars (QMBS) constitute a new quantum dynamical regime in which rare scarred eigenstates mediate weak ergodicity breaking. One open question is to understand the most general setting in which these states arise. In this work, we develop a generic construction that embeds a new class of QMBS, rainbow scars, into the spectrum of an arbitrary Hamiltonian. Unlike other examples of QMBS, rainbow scars display extensive bipartite entanglement entropy while retaining a simple entanglement structure. Specifically, the entanglement scaling is volume-law for a random bipartition, while scaling for a fine-tuned bipartition is sub-extensive. When internal symmetries are present, the construction leads to multiple, and even towers of rainbow scars revealed through distinctive non-thermal dynamics. To this end, we provide an experimental road map for realizing rainbow scar states in a Rydberg-atom quantum simulator, leading to coherent oscillations distinct from the strictly sub-volume-law QMBS previously realized in the same system.

قيم البحث

اقرأ أيضاً

We analyze the quantum trajectory dynamics of free fermions subject to continuous monitoring. For weak monitoring, we identify a novel dynamical regime of subextensive entanglement growth, reminiscent of a critical phase with an emergent conformal in variance. For strong monitoring, however, the dynamics favors a transition into a quantum Zeno-like area-law regime. Close to the critical point, we observe logarithmic finite size corrections, indicating a Berezinskii-Kosterlitz-Thouless mechanism underlying the transition. This uncovers an unconventional entanglement transition in an elementary, physically realistic model for weak continuous measurements. In addition, we demonstrate that the measurement aspect in the dynamics is crucial for whether or not a phase transition takes place.
Area laws were first discovered by Bekenstein and Hawking, who found that the entropy of a black hole grows proportional to its surface area, and not its volume. Entropy area laws have since become a fundamental part of modern physics, from the holog raphic principle in quantum gravity to ground state wavefunctions of quantum matter, where entanglement entropy is generically found to obey area law scaling. As no experiments are currently capable of directly probing the entanglement area law in naturally occurring many-body systems, evidence of its existence is based on studies of simplified theories. Using new exact microscopic numerical simulations of superfluid $^4$He, we demonstrate for the first time an area law scaling of entanglement entropy in a real quantum liquid in three dimensions. We validate the fundamental principles underlying its physical origin, and present an entanglement equation of state showing how it depends on the density of the superfluid.
Non-equilibrium properties of quantum materials present many intriguing properties, among them athermal behavior, which violates the eigenstate thermalization hypothesis. Such behavior has primarily been observed in disordered systems. More recently, experimental and theoretical evidence for athermal eigenstates, known as quantum scars has emerged in non-integrable disorder-free models in one dimension with constrained dynamics. In this work, we show the existence of quantum scar eigenstates and investigate their dynamical properties in many simple two-body Hamiltonians with staggered interactions, involving ferromagnetic and antiferromagnetic motifs, in arbitrary dimensions. These magnetic models include simple modifications of widely studied ones (e.g., the XXZ model) on a variety of frustrated and unfrustrated lattices. We demonstrate our ideas by focusing on the two dimensional frustrated spin-1/2 kagome antiferromagnet, which was previously shown to harbor a special exactly solvable point with three-coloring ground states in its phase diagram. For appropriately chosen initial product states -- for example, those which correspond to any state of valid three-colors -- we show the presence of robust quantum revivals, which survive the addition of anisotropic terms. We also suggest avenues for future experiments which may see this effect in real materials.
We revisit the $eta$-pairing states in Hubbard models and explore their connections to quantum many-body scars to discover a universal scars mechanism. $eta$-pairing occurs due to an algebraic structure known as a Spectrum Generating Algebra (SGA), g iving rise to equally spaced towers of eigenstates in the spectrum. We generalize the original $eta$-pairing construction and show that several Hubbard-like models on arbitrary graphs exhibit SGAs, including ones with disorder and spin-orbit coupling. We further define a Restricted Spectrum Generating Algebra (RSGA) and give examples of perturbations to the Hubbard-like models that preserve an equally spaced tower of the original model as eigenstates. The states of the surviving tower exhibit a sub-thermal entanglement entropy, and we analytically obtain parameter regimes for which they lie in the bulk of the spectrum, showing that they are exact quantum many-body scars. The RSGA framework also explains the equally spaced towers of eigenstates in several well-known models of quantum scars, including the AKLT model.
Entanglement entropy in free scalar field theory at its ground state is dominated by an area law term. However, when mixed states are considered this property ceases to exist. We show that in such cases the mutual information obeys an area law. The p roportionality constant connecting the area to the mutual information has an interesting dependence on the temperature. At infinite temperature it tends to a finite value which coincides with the classical calculation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا