ﻻ يوجد ملخص باللغة العربية
We develop a general theory for two-dimensional (2D) anomalous Floquet higher-order topological superconductors (AFHOTSC), which are dynamical Majorana-carrying phases of matter with no static counterpart. Despite the triviality of its bulk Floquet bands, an AFHOTSC generically features the simultaneous presence of corner-localized Majorana modes at both zero and $pi/T$ quasi-energies, a phenomenon beyond the scope of any static topological band theory. We show that the key to AFHOTSC is its unavoidable singular behavior in the phase spectrum of the bulk time-evolution operator. By mapping such evolution-phase singularities to the stroboscopic boundary signatures, we classify all 2D AFHOTSCs that are protected by a rotation group symmetry in symmetry class D. We further extract a higher-order topological index for unambiguously predicting the presence of Floquet corner Majorana modes, which we confirm numerically. Our theory serves as a milestone towards a dynamical topological theory for Floquet superconducting systems.
Periodically-driven or Floquet systems can realize anomalous topological phenomena that do not exist in any equilibrium states of matter, whose classification and characterization require new theoretical ideas that are beyond the well-established par
Higher order topological insulators (HOTI) have emerged as a new class of phases, whose robust in-gap corner modes arise from the bulk higher-order multipoles beyond the dipoles in conventional topological insulators. Here, we incorporate Floquet dri
The mathematical field of topology has become a framework to describe the low-energy electronic structure of crystalline solids. A typical feature of a bulk insulating three-dimensional topological crystal are conducting two-dimensional surface state
The recent discoveries of higher-order topological insulators (HOTIs) have shifted the paradigm of topological materials, which was previously limited to topological states at boundaries of materials, to those at boundaries of boundaries, such as cor
Higher order topological insulators (HOTIs) are a new class of topological materials which host protected states at the corners or hinges of a crystal. HOTIs provide an intriguing alternative platform for helical and chiral edge states and Majorana m