ترغب بنشر مسار تعليمي؟ اضغط هنا

The label bias and selection bias are acknowledged as two reasons in data that will hinder the fairness of machine-learning outcomes. The label bias occurs when the labeling decision is disturbed by sensitive features, while the selection bias occurs when subjective bias exists during the data sampling. Even worse, models trained on such data can inherit or even intensify the discrimination. Most algorithmic fairness approaches perform an empirical risk minimization with predefined fairness constraints, which tends to trade-off accuracy for fairness. However, such methods would achieve the desired fairness level with the sacrifice of the benefits (receive positive outcomes) for individuals affected by the bias. Therefore, we propose a Bias-TolerantFAirRegularizedLoss (B-FARL), which tries to regain the benefits using data affected by label bias and selection bias. B-FARL takes the biased data as input, calls a model that approximates the one trained with fair but latent data, and thus prevents discrimination without constraints required. In addition, we show the effective components by decomposing B-FARL, and we utilize the meta-learning framework for the B-FARL optimization. The experimental results on real-world datasets show that our method is empirically effective in improving fairness towards the direction of true but latent labels.
Hawkes processes are a class of point processes that have the ability to model the self- and mutual-exciting phenomena. Although the classic Hawkes processes cover a wide range of applications, their expressive ability is limited due to three key hyp otheses: parametric, linear and homogeneous. Recent work has attempted to address these limitations separately. This work aims to overcome all three assumptions simultaneously by proposing the flexible state-switching Hawkes processes: a flexible, nonlinear and nonhomogeneous variant where a state process is incorporated to interact with the point processes. The proposed model empowers Hawkes processes to be applied to time-varying systems. For inference, we utilize the latent variable augmentation technique to design two efficient Bayesian inference algorithms: Gibbs sampler and mean-field variational inference, with analytical iterative updates to estimate the posterior. In experiments, our model achieves superior performance compared to the state-of-the-art competitors.
We developed an inverse design framework enabling automated generation of stable multi-component crystal structures by optimizing the formation energies in the latent space based on reversible crystal graphs with continuous representation. It is demo nstrated that 9,160 crystal structures can be generated out of 50,000 crystal graphs, leading to 8,310 distinct cases using a training set of 52,615 crystal structures from Materials Project. Detailed analysis on 15 selected systems reveals that unreported crystal structures below the convex hull can be discovered in 6 material systems. Moreover, the generation efficiency can be further improved by considering extra hypothetical structures in the training. This paves the way to perform inverse design of multicomponent materials with possible multi-objective optimization.
Graphics Processing Units (GPUs) have been widely used to accelerate artificial intelligence, physics simulation, medical imaging, and information visualization applications. To improve GPU performance, GPU hardware designers need to identify perform ance issues by inspecting a huge amount of simulator-generated traces. Visualizing the execution traces can reduce the cognitive burden of users and facilitate making sense of behaviors of GPU hardware components. In this paper, we first formalize the process of GPU performance analysis and characterize the design requirements of visualizing execution traces based on a survey study and interviews with GPU hardware designers. We contribute data and task abstraction for GPU performance analysis. Based on our task analysis, we propose Daisen, a framework that supports data collection from GPU simulators and provides visualization of the simulator-generated GPU execution traces. Daisen features a data abstraction and trace format that can record simulator-generated GPU execution traces. Daisen also includes a web-based visualization tool that helps GPU hardware designers examine GPU execution traces, identify performance bottlenecks, and verify performance improvement. Our qualitative evaluation with GPU hardware designers demonstrates that the design of Daisen reflects the typical workflow of GPU hardware designers. Using Daisen, participants were able to effectively identify potential performance bottlenecks and opportunities for performance improvement. The open-sourced implementation of Daisen can be found at gitlab.com/akita/vis. Supplemental materials including a demo video, survey questions, evaluation study guide, and post-study evaluation survey are available at osf.io/j5ghq.
In response to COVID-19, a vast number of visualizations have been created to communicate information to the public. Information exposure in a public health crisis can impact peoples attitudes towards and responses to the crisis and risks, and ultima tely the trajectory of a pandemic. As such, there is a need for work that documents, organizes, and investigates what COVID-19 visualizations have been presented to the public. We address this gap through an analysis of 668 COVID-19 visualizations. We present our findings through a conceptual framework derived from our analysis, that examines who, (uses) what data, (to communicate) what messages, in what form, under what circumstances in the context of COVID-19 crisis visualizations. We provide a set of factors to be considered within each component of the framework. We conclude with directions for future crisis visualization research.
Thermal management materials are of critical importance for engineering miniaturized electronic devices, where theoretical design of such materials demands the evaluation of thermal conductivities which are numerically expensive. In this work, we app lied the recently developed machine learning interatomic potential (MLIP) to evaluate the thermal conductivity of hexagonal boron nitride monolayers. The MLIP is obtained using the Gaussian approximation potential (GAP) method, and the resulting lattice dynamical properties and thermal conductivity are compared with those obtained from explicit frozen phonon calculations. It is observed that accurate thermal conductivity can be obtained based on MLIP constructed with about 30% representative configurations, and the high-order force constants provide a more reliable benchmark on the quality of MLIP than the harmonic approximation.
Music source separation is important for applications such as karaoke and remixing. Much of previous research focuses on estimating short-time Fourier transform (STFT) magnitude and discarding phase information. We observe that, for singing voice sep aration, phase can make considerable improvement in separation quality. This paper proposes a complex ratio masking method for voice and accompaniment separation. The proposed method employs DenseUNet with self attention to estimate the real and imaginary components of STFT for each sound source. A simple ensemble technique is introduced to further improve separation performance. Evaluation results demonstrate that the proposed method outperforms recent state-of-the-art models for both separated voice and accompaniment.
113 - Feng Zhou , Yixuan Zhang , Jun Zhu 2020
Hawkes process provides an effective statistical framework for analyzing the time-dependent interaction of neuronal spiking activities. Although utilized in many real applications, the classic Hawkes process is incapable of modelling inhibitory inter actions among neurons. Instead, the nonlinear Hawkes process allows for a more flexible influence pattern with excitatory or inhibitory interactions. In this paper, three sets of auxiliary latent variables (P{o}lya-Gamma variables, latent marked Poisson processes and sparsity variables) are augmented to make functional connection weights in a Gaussian form, which allows for a simple iterative algorithm with analytical updates. As a result, an efficient expectation-maximization (EM) algorithm is derived to obtain the maximum a posteriori (MAP) estimate. We demonstrate the accuracy and efficiency performance of our algorithm on synthetic and real data. For real neural recordings, we show our algorithm can estimate the temporal dynamics of interaction and reveal the interpretable functional connectivity underlying neural spike trains.
Existing image-to-image transformation approaches primarily focus on synthesizing visually pleasing data. Generating images with correct identity labels is challenging yet much less explored. It is even more challenging to deal with image transformat ion tasks with large deformation in poses, viewpoints, or scales while preserving the identity, such as face rotation and object viewpoint morphing. In this paper, we aim at transforming an image with a fine-grained category to synthesize new images that preserve the identity of the input image, which can thereby benefit the subsequent fine-grained image recognition and few-shot learning tasks. The generated images, transformed with large geometric deformation, do not necessarily need to be of high visual quality but are required to maintain as much identity information as possible. To this end, we adopt a model based on generative adversarial networks to disentangle the identity related and unrelated factors of an image. In order to preserve the fine-grained contextual details of the input image during the deformable transformation, a constrained nonalignment connection method is proposed to construct learnable highways between intermediate convolution blocks in the generator. Moreover, an adaptive identity modulation mechanism is proposed to transfer the identity information into the output image effectively. Extensive experiments on the CompCars and Multi-PIE datasets demonstrate that our model preserves the identity of the generated images much better than the state-of-the-art image-to-image transformation models, and as a result significantly boosts the visual recognition performance in fine-grained few-shot learning.
Magnetic materials have a plethora of applications ranging from informatics to energy harvesting and conversion. However, such functionalities are limited by the magnetic ordering temperature. In this work, we performed machine learning on the magnet ic ground state and the Curie temperature (TC), using generic chemical and crystal structural descriptors. Based on a database of 2805 known intermetallic compounds, a random forest model is trained to classify ferromagnetic and antiferromagnetic compounds and to do regression on the TC for the ferromagnets. The resulting accuracy is about 86% for classification and 92% for regression (with a mean absolute error of 58K). Composition based features are sufficient for both classification and regression, whereas structural descriptors improve the performance. Finally, we predict the magnetic ordering and TC for all the intermetallic magnetic materials in the Materials Project. Our work paves the way to accelerate the development of magnetic materials for technological applications.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا