ترغب بنشر مسار تعليمي؟ اضغط هنا

Complex ratio masking for singing voice separation

84   0   0.0 ( 0 )
 نشر من قبل Yixuan Zhang
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Music source separation is important for applications such as karaoke and remixing. Much of previous research focuses on estimating short-time Fourier transform (STFT) magnitude and discarding phase information. We observe that, for singing voice separation, phase can make considerable improvement in separation quality. This paper proposes a complex ratio masking method for voice and accompaniment separation. The proposed method employs DenseUNet with self attention to estimate the real and imaginary components of STFT for each sound source. A simple ensemble technique is introduced to further improve separation performance. Evaluation results demonstrate that the proposed method outperforms recent state-of-the-art models for both separated voice and accompaniment.



قيم البحث

اقرأ أيضاً

Detecting singing-voice in polyphonic instrumental music is critical to music information retrieval. To train a robust vocal detector, a large dataset marked with vocal or non-vocal label at frame-level is essential. However, frame-level labeling is time-consuming and labor expensive, resulting there is little well-labeled dataset available for singing-voice detection (S-VD). Hence, we propose a data augmentation method for S-VD by transfer learning. In this study, clean speech clips with voice activity endpoints and separate instrumental music clips are artificially added together to simulate polyphonic vocals to train a vocal/non-vocal detector. Due to the different articulation and phonation between speaking and singing, the vocal detector trained with the artificial dataset does not match well with the polyphonic music which is singing vocals together with the instrumental accompaniments. To reduce this mismatch, transfer learning is used to transfer the knowledge learned from the artificial speech-plus-music training set to a small but matched polyphonic dataset, i.e., singing vocals with accompaniments. By transferring the related knowledge to make up for the lack of well-labeled training data in S-VD, the proposed data augmentation method by transfer learning can improve S-VD performance with an F-score improvement from 89.5% to 93.2%.
Singing voice conversion is converting the timbre in the source singing to the target speakers voice while keeping singing content the same. However, singing data for target speaker is much more difficult to collect compared with normal speech data.I n this paper, we introduce a singing voice conversion algorithm that is capable of generating high quality target speakers singing using only his/her normal speech data. First, we manage to integrate the training and conversion process of speech and singing into one framework by unifying the features used in standard speech synthesis system and singing synthesis system. In this way, normal speech data can also contribute to singing voice conversion training, making the singing voice conversion system more robust especially when the singing database is small.Moreover, in order to achieve one-shot singing voice conversion, a speaker embedding module is developed using both speech and singing data, which provides target speaker identify information during conversion. Experiments indicate proposed sing conversion system can convert source singing to target speakers high-quality singing with only 20 seconds of target speakers enrollment speech data.
Singing Voice Separation (SVS) tries to separate singing voice from a given mixed musical signal. Recently, many U-Net-based models have been proposed for the SVS task, but there were no existing works that evaluate and compare various types of inter mediate blocks that can be used in the U-Net architecture. In this paper, we introduce a variety of intermediate spectrogram transformation blocks. We implement U-nets based on these blocks and train them on complex-valued spectrograms to consider both magnitude and phase. These networks are then compared on the SDR metric. When using a particular block composed of convolutional and fully-connected layers, it achieves state-of-the-art SDR on the MUSDB singing voice separation task by a large margin of 0.9 dB. Our code and models are available online.
The state of the art in music source separation employs neural networks trained in a supervised fashion on multi-track databases to estimate the sources from a given mixture. With only few datasets available, often extensive data augmentation is used to combat overfitting. Mixing random tracks, however, can even reduce separation performance as instruments in real music are strongly correlated. The key concept in our approach is that source estimates of an optimal separator should be indistinguishable from real source signals. Based on this idea, we drive the separator towards outputs deemed as realistic by discriminator networks that are trained to tell apart real from separator samples. This way, we can also use unpaired source and mixture recordings without the drawbacks of creating unrealistic music mixtures. Our framework is widely applicable as it does not assume a specific network architecture or number of sources. To our knowledge, this is the first adoption of adversarial training for music source separation. In a prototype experiment for singing voice separation, separation performance increases with our approach compared to purely supervised training.
Singing voice conversion (SVC) is one promising technique which can enrich the way of human-computer interaction by endowing a computer the ability to produce high-fidelity and expressive singing voice. In this paper, we propose DiffSVC, an SVC syste m based on denoising diffusion probabilistic model. DiffSVC uses phonetic posteriorgrams (PPGs) as content features. A denoising module is trained in DiffSVC, which takes destroyed mel spectrogram produced by the diffusion/forward process and its corresponding step information as input to predict the added Gaussian noise. We use PPGs, fundamental frequency features and loudness features as auxiliary input to assist the denoising process. Experiments show that DiffSVC can achieve superior conversion performance in terms of naturalness and voice similarity to current state-of-the-art SVC approaches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا