ﻻ يوجد ملخص باللغة العربية
Thermal management materials are of critical importance for engineering miniaturized electronic devices, where theoretical design of such materials demands the evaluation of thermal conductivities which are numerically expensive. In this work, we applied the recently developed machine learning interatomic potential (MLIP) to evaluate the thermal conductivity of hexagonal boron nitride monolayers. The MLIP is obtained using the Gaussian approximation potential (GAP) method, and the resulting lattice dynamical properties and thermal conductivity are compared with those obtained from explicit frozen phonon calculations. It is observed that accurate thermal conductivity can be obtained based on MLIP constructed with about 30% representative configurations, and the high-order force constants provide a more reliable benchmark on the quality of MLIP than the harmonic approximation.
We introduce a Gaussian approximation potential (GAP) for atomistic simulations of liquid and amorphous elemental carbon. Based on a machine-learning representation of the density-functional theory (DFT) potential-energy surface, such interatomic pot
The half-Heusler compound has drawn attention in a variety of fields as a candidate material for thermoelectric energy conversion and spintronics technology. This is because it has various electronic structures, such as semi-metals, semiconductors, a
We demonstrate that a high-dimensional neural network potential (HDNNP) can predict the lattice thermal conductivity of semiconducting materials with an accuracy comparable to that of density functional theory (DFT) calculation. After a training proc
We develop an Fe-C-H interatomic potential based on the modified embedded-atom method (MEAM) formalism based on density functional theory to enable large-scale modular dynamics simulations of carbon steel and hydrogen.
Intrinsically low lattice thermal conductivity ($kappa_l$) is a desired requirement in many crystalline solids such as thermal barrier coatings and thermoelectrics. Here, we design an advanced machine-learning (ML) model based on crystal graph convol