ترغب بنشر مسار تعليمي؟ اضغط هنا

Daisen: A Framework for Visualizing Detailed GPU Execution

113   0   0.0 ( 0 )
 نشر من قبل Yifan Sun
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Graphics Processing Units (GPUs) have been widely used to accelerate artificial intelligence, physics simulation, medical imaging, and information visualization applications. To improve GPU performance, GPU hardware designers need to identify performance issues by inspecting a huge amount of simulator-generated traces. Visualizing the execution traces can reduce the cognitive burden of users and facilitate making sense of behaviors of GPU hardware components. In this paper, we first formalize the process of GPU performance analysis and characterize the design requirements of visualizing execution traces based on a survey study and interviews with GPU hardware designers. We contribute data and task abstraction for GPU performance analysis. Based on our task analysis, we propose Daisen, a framework that supports data collection from GPU simulators and provides visualization of the simulator-generated GPU execution traces. Daisen features a data abstraction and trace format that can record simulator-generated GPU execution traces. Daisen also includes a web-based visualization tool that helps GPU hardware designers examine GPU execution traces, identify performance bottlenecks, and verify performance improvement. Our qualitative evaluation with GPU hardware designers demonstrates that the design of Daisen reflects the typical workflow of GPU hardware designers. Using Daisen, participants were able to effectively identify potential performance bottlenecks and opportunities for performance improvement. The open-sourced implementation of Daisen can be found at gitlab.com/akita/vis. Supplemental materials including a demo video, survey questions, evaluation study guide, and post-study evaluation survey are available at osf.io/j5ghq.

قيم البحث

اقرأ أيضاً

The rapidly growing popularity and scale of data-parallel workloads demand a corresponding increase in raw computational power of GPUs (Graphics Processing Units). As single-GPU systems struggle to satisfy the performance demands, multi-GPU systems h ave begun to dominate the high-performance computing world. The advent of such systems raises a number of design challenges, including the GPU microarchitecture, multi-GPU interconnect fabrics, runtime libraries and associated programming models. The research community currently lacks a publically available and comprehensive multi-GPU simulation framework and benchmark suite to evaluate multi-GPU system design solutions. In this work, we present MGSim, a cycle-accurate, extensively validated, multi-GPU simulator, based on AMDs Graphics Core Next 3 (GCN3) instruction set architecture. We complement MGSim with MGMark, a suite of multi-GPU workloads that explores multi-GPU collaborative execution patterns. Our simulator is scalable and comes with in-built support for multi-threaded execution to enable fast and efficient simulations. In terms of performance accuracy, MGSim differs $5.5%$ on average when compared against actual GPU hardware. We also achieve a $3.5times$ and a $2.5times$ average speedup in function emulation and architectural simulation with 4 CPU cores, while delivering the same accuracy as the serial simulation. We illustrate the novel simulation capabilities provided by our simulator through a case study exploring programming models based on a unified multi-GPU system (U-MGPU) and a discrete multi-GPU system (D-MGPU) that both utilize unified memory space and cross-GPU memory access. We evaluate the design implications from our case study, suggesting that D-MGPU is an attractive programming model for future multi-GPU systems.
111 - Yixing Li , Zichuan Liu , Kai Xu 2017
FPGA-based hardware accelerators for convolutional neural networks (CNNs) have obtained great attentions due to their higher energy efficiency than GPUs. However, it is challenging for FPGA-based solutions to achieve a higher throughput than GPU coun terparts. In this paper, we demonstrate that FPGA acceleration can be a superior solution in terms of both throughput and energy efficiency when a CNN is trained with binary constraints on weights and activations. Specifically, we propose an optimized FPGA accelerator architecture tailored for bitwise convolution and normalization that features massive spatial parallelism with deep pipelines stages. A key advantage of the FPGA accelerator is that its performance is insensitive to data batch size, while the performance of GPU acceleration varies largely depending on the batch size of the data. Experiment results show that the proposed accelerator architecture for binary CNNs running on a Virtex-7 FPGA is 8.3x faster and 75x more energy-efficient than a Titan X GPU for processing online individual requests in small batch sizes. For processing static data in large batch sizes, the proposed solution is on a par with a Titan X GPU in terms of throughput while delivering 9.5x higher energy efficiency.
Designing efficient and scalable sparse linear algebra kernels on modern multi-GPU based HPC systems is a daunting task due to significant irregular memory references and workload imbalance across the GPUs. This is particularly the case for Sparse Tr iangular Solver (SpTRSV) which introduces additional two-dimensional computation dependencies among subsequent computation steps. Dependency information is exchanged and shared among GPUs, thus warrant for efficient memory allocation, data partitioning, and workload distribution as well as fine-grained communication and synchronization support. In this work, we demonstrate that directly adopting unified memory can adversely affect the performance of SpTRSV on multi-GPU architectures, despite linking via fast interconnect like NVLinks and NVSwitches. Alternatively, we employ the latest NVSHMEM technology based on Partitioned Global Address Space programming model to enable efficient fine-grained communication and drastic synchronization overhead reduction. Furthermore, to handle workload imbalance, we propose a malleable task-pool execution model which can further enhance the utilization of GPUs. By applying these techniques, our experiments on the NVIDIA multi-GPU supernode V100-DGX-1 and DGX-2 systems demonstrate that our design can achieve on average 3.53x (up to 9.86x) speedup on a DGX-1 system and 3.66x (up to 9.64x) speedup on a DGX-2 system with 4-GPUs over the Unified-Memory design. The comprehensive sensitivity and scalability studies also show that the proposed zero-copy SpTRSV is able to fully utilize the computing and communication resources of the multi-GPU system.
Scientific computing sometimes involves computation on sensitive data. Depending on the data and the execution environment, the HPC (high-performance computing) user or data provider may require confidentiality and/or integrity guarantees. To study t he applicability of hardware-based trusted execution environments (TEEs) to enable secure scientific computing, we deeply analyze the performance impact of AMD SEV and Intel SGX for diverse HPC benchmarks including traditional scientific computing, machine learning, graph analytics, and emerging scientific computing workloads. We observe three main findings: 1) SEV requires careful memory placement on large scale NUMA machines (1$times$$-$3.4$times$ slowdown without and 1$times$$-$1.15$times$ slowdown with NUMA aware placement), 2) virtualization$-$a prerequisite for SEV$-$results in performance degradation for workloads with irregular memory accesses and large working sets (1$times$$-$4$times$ slowdown compared to native execution for graph applications) and 3) SGX is inappropriate for HPC given its limited secure memory size and inflexible programming model (1.2$times$$-$126$times$ slowdown over unsecure execution). Finally, we discuss forthcoming new TEE designs and their potential impact on scientific computing.
The Data Activated Liu Graph Engine - DALiuGE - is an execution framework for processing large astronomical datasets at a scale required by the Square Kilometre Array Phase 1 (SKA1). It includes an interface for expressing complex data reduction pipe lines consisting of both data sets and algorithmic components and an implementation run-time to execute such pipelines on distributed resources. By mapping the logical view of a pipeline to its physical realisation, DALiuGE separates the concerns of multiple stakeholders, allowing them to collectively optimise large-scale data processing solutions in a coherent manner. The execution in DALiuGE is data-activated, where each individual data item autonomously triggers the processing on itself. Such decentralisation also makes the execution framework very scalable and flexible, supporting pipeline sizes ranging from less than ten tasks running on a laptop to tens of millions of concurrent tasks on the second fastest supercomputer in the world. DALiuGE has been used in production for reducing interferometry data sets from the Karl E. Jansky Very Large Array and the Mingantu Ultrawide Spectral Radioheliograph; and is being developed as the execution framework prototype for the Science Data Processor (SDP) consortium of the Square Kilometre Array (SKA) telescope. This paper presents a technical overview of DALiuGE and discusses case studies from the CHILES and MUSER projects that use DALiuGE to execute production pipelines. In a companion paper, we provide in-depth analysis of DALiuGEs scalability to very large numbers of tasks on two supercomputing facilities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا