ترغب بنشر مسار تعليمي؟ اضغط هنا

Prolonged experimental attempts to find magnetic monopoles (i.e., elementary particles with an isolated magnetic charge in three dimensions) have not yet been successful despite intensive efforts made since Diracs proposal in 1931. Particle physicist s have predicted the possible collision and pair annihilation of two magnetic charges with opposite signs. However, if such annihilation exists, its experimental observation would be difficult because its energy scale is predicted to be tremendously high ($sim$10$^{16}$ GeV). In the present work, we theoretically predict using the Floquet theory that a pair of slightly gapped Dirac-cone bands in a weakly-charge-ordered organic conductor $alpha$-(BEDT-TTF)$_2$I$_3$, which behave as magnetic charges with opposite signs in the momentum space, exhibit pair annihilation under irradiation with linearly polarized light. This photoinduced pair annihilation is accompanied by a non-topological phase transition to the Floquet normal insulator phase in contrast to the well-known circularly-polarized-light-induced topological phase transition to the Floquet Chern insulator phase. We discuss that $alpha$-(BEDT-TTF)$_2$I$_3$ has a peculiar band structure capable of realizing a suitable experimental condition (i.e., off-resonant condition) and a charge ordered state providing a required staggered site potential and thereby provides a rare example of materials that can be used to observe the predicted pair annihilation phenomenon. The feasibility of experimental observation is also discussed.
We theoretically investigate possible photoinduced topological phase transitions in the organic salt $alpha$-(BEDT-TTF)$_2$I$_3$, which possesses a pair of inclined massless Dirac-cone bands between the conduction and valence bands under uniaxial pre ssure. The Floquet analyses of a driven tight-binding model for this material reveal rich photoinduced variations of band structures, Chern numbers, and Hall conductivities under irradiation with elliptically polarized light. The obtained phase diagrams contain a variety of nonequilibrium steady phases, e.g., the Floquet Chern insulator, Floquet semimetal, and Floquet normal insulator phases. This work widens a scope of target materials for research on photoinduced topological phase transitions and contributes to development of research on the optical manipulations of electronic states in matters.
We demonstrate that a machine learning technique with a simple feedforward neural network can sensitively detect two successive phase transitions associated with the Berezinskii-Kosterlitz-Thouless (BKT) phase in q-state clock models simultaneously b y analyzing the weight matrix components connecting the hidden and output layers. We find that the method requires only a data set of the raw spatial spin configurations for the learning procedure. This data set is generated by Monte-Carlo thermalizations at selected temperatures. Neither prior knowledge of, for example, the transition temperatures, number of phases, and order parameters nor processed data sets of, for example, the vortex configurations, histograms of spin orientations, and correlation functions produced from the original spin-configuration data are needed, in contrast with most of previously proposed machine learning methods based on supervised learning. Our neural network evaluates the transition temperatures as T_2/J=0.921 and T_1/J=0.410 for the paramagnetic-to-BKT transition and BKT-to-ferromagnetic transition in the eight-state clock model on a square lattice. Both critical temperatures agree well with those evaluated in the previous numerical studies.
We theoretically study the real-time dynamics of the photoinduced topological phase transition to a nonequilibrium Floquet Chern insulator in an organic conductor $alpha$-(BEDT-TTF)$_2$I$_3$, which was recently predicted using the Floquet theory. By using a tight-binding model of $alpha$-(BEDT-TTF)$_2$I$_3$ that hosts a pair of tilted Dirac-cone bands at the Fermi level, we solve the time-dependent Schrodinger equation and obtained time evolutions of physical quantities for continuous-wave and pulse excitations with circularly polarized light. We demonstrate that, for the continuous-wave excitations, time profiles of the Chern number and the Hall conductivity show indications of the Floquet topological insulator. We argue that the Hall conductivity exhibits a slow oscillation with its frequency corresponding to a photoinduced direct gap determined by the Floquet band structure. With pulse excitations, transient excitation spectra are obtained, from which we infer the formation of Floquet bands and the gap opening at the Dirac point during the pulse irradiation. This dynamical gap formation is also manifested by the slow oscillation component of the Hall conductivity; that is, its frequency increases with time toward the pulse peak at which it nearly coincides with the photoinduced direct gap. The relevance of the results to experiments is also discussed.
We investigate the condition for the photoinduced enhancement of an excitonic order in a two-orbital Hubbard model, which has been theoretically proposed in our previous work [Phys. Rev. B 97, 115105 (2018)], and analyze it from the viewpoint of the Rabi oscillation. Within the mean-field approximation, we simulate real-time dynamics of an excitonic insulator with a direct gap, where the pair condensation in the initial state is of BEC nature and the photoexcitation is introduced by electric dipole transitions. We first discuss that in the atomic limit our model is reduced to a two-level system that undergoes the Rabi oscillation, so that for single cycle pulses physical quantities after the photoirradiation are essentially determined by the ratio of the Rabi frequency to the pump-light frequency. Then, it is shown that this picture holds even in the case of nonzero transfer integrals where each one-particle state exhibits the Rabi oscillation leading to the enhancement of the excitonic order. We demonstrate that effects of electron-phonon interactions do not alter the results qualitatively. We also examine many-body dynamics by the exact diagonalization method on small clusters, which strongly suggests that our mechanism for the enhancement of the exctionic order survives even when quantum fluctuations are taken into account.
We theoretically study the inverse Faraday effect, i.e., the optical induction of spin polarization with circularly polarized light, by particularly focusing on effects of band dispersions and Fermi surfaces in crystal systems with the spin-orbit int eraction (SOI). By numerically solving the time-dependent Schrodinger equation of a tight-binding model with the Rashba-type SOI, we reproduce the light-induced spin polarization proportional to $E_0^2/omega^3$ where $E_0$ and $omega$ are the electric-field amplitude and the angular frequency of light, respectively. This optical spin induction is attributed to dynamical magnetoelectric coupling between the light electric field and the electron spins mediated by the SOI. We elucidate that the magnitude and sign of the induced spin polarization sensitively depend on the electron filling. To understand these results, we construct an analytical theory based on the Floquet theorem. The theory successfully explains the dependencies on $E_0$ and $omega$ and ascribes the electron-filling dependence to a momentum-dependent effective magnetic field governed by the Fermi-surface geometry. Several candidate materials and experimental conditions relevant to our theory and model parameters are also discussed. Our findings will enable us to engineer the magneto-optical responses of matters via tuning the material parameters.
Photoinduced dynamics in an excitonic insulator is studied theoretically by using a two-orbital Hubbard model on the square lattice where the excitonic phase in the ground state is characterized by the BCS-BEC crossover as a function of the interorbi tal Coulomb interaction. We consider the case where the order has a wave vector $Q=(0,0)$ and photoexcitation is introduced by a dipole transition. Within the mean-field approximation, we show that the excitonic order can be enhanced by the photoexcitation when the system is initially in the BEC regime of the excitonic phase, whereas it is reduced if the system is initially in the BCS regime. The origin of this difference is discussed from behaviors of momentum distribution functions and momentum-dependent excitonic pair condensation. In particular, we show that the phases of the excitonic pair condensation have an important role in determining whether the excitonic order is enhanced or not.
The effects of electron correlation in the quasi-two-dimensional organic conductor alpha-(BEDT-TTF)2I3 are investigated theoretically by using an extended Hubbard model with on-site and nearest-neighbor Coulomb interactions. A variational Monte Carlo method is applied to study its ground-state properties. We show that there appears a nonmagnetic horizontal-stripe charge order in which nearest-neighbor correlation functions indicate a tendency toward a spin-singlet formation on the bonds with large transfer integrals along the charge-rich stripe. Under uniaxial pressure, a first-order transition from the nonmagnetic charge order to a zero-gap state occurs. Our results on a spin correlation length in the charge-ordered state suggest that a spin gap is almost unaffected by the uniaxial pressure in spite of the suppression of the charge disproportionation. The relevance of these contrasting behaviors in spin and charge degrees of freedom to recent experimental observations is discussed.
Many-electron dynamics induced by a symmetric monocycle electric-field pulse of large amplitude is theoretically investigated in one- and two-dimensional half-filled extended Hubbard models on regular lattices (i.e., without dimerization) using the e xact diagonalization method for small systems and the Hartree-Fock approximation for large systems. The formation of a negative-temperature state and the change from repulsive interactions to effective attractive interactions are shown to be realized for a wide region of the field amplitude and the excitation energy. For a nonnegligible intersite repulsive interaction, the numerical results are consistent with the fact that the phase separation between charge-rich and charge-poor regions is caused by the corresponding effective attraction.
A negative differential resistance (NDR) in a one-dimensional band insulator attached to electrodes is investigated. We systematically examine the effects of an electrode bandwidth and a potential distribution inside the insulator on current-voltage characteristics. We show that, in uncorrelated systems, the NDR is generally caused by a linear potential gradient as well as by a finite electrode bandwidth. In particular, the former reduces the effective bandwidth of the insulator for elastic tunneling by tilting its energy band, so that it brings about the NDR even in the limit of large electrode bandwidth.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا