ﻻ يوجد ملخص باللغة العربية
Prolonged experimental attempts to find magnetic monopoles (i.e., elementary particles with an isolated magnetic charge in three dimensions) have not yet been successful despite intensive efforts made since Diracs proposal in 1931. Particle physicists have predicted the possible collision and pair annihilation of two magnetic charges with opposite signs. However, if such annihilation exists, its experimental observation would be difficult because its energy scale is predicted to be tremendously high ($sim$10$^{16}$ GeV). In the present work, we theoretically predict using the Floquet theory that a pair of slightly gapped Dirac-cone bands in a weakly-charge-ordered organic conductor $alpha$-(BEDT-TTF)$_2$I$_3$, which behave as magnetic charges with opposite signs in the momentum space, exhibit pair annihilation under irradiation with linearly polarized light. This photoinduced pair annihilation is accompanied by a non-topological phase transition to the Floquet normal insulator phase in contrast to the well-known circularly-polarized-light-induced topological phase transition to the Floquet Chern insulator phase. We discuss that $alpha$-(BEDT-TTF)$_2$I$_3$ has a peculiar band structure capable of realizing a suitable experimental condition (i.e., off-resonant condition) and a charge ordered state providing a required staggered site potential and thereby provides a rare example of materials that can be used to observe the predicted pair annihilation phenomenon. The feasibility of experimental observation is also discussed.
We theoretically investigate possible photoinduced topological phase transitions in the organic salt $alpha$-(BEDT-TTF)$_2$I$_3$, which possesses a pair of inclined massless Dirac-cone bands between the conduction and valence bands under uniaxial pre
The emergence of photo-induced topological phases and their phase transitions are theoretically predicted in organic salt $alpha$-(BEDT-TTF)$_2$I$_3$, which possesses inclined Dirac cones in its band structure. By analyzing a photo-driven tight-bindi
We theoretically study the real-time dynamics of the photoinduced topological phase transition to a nonequilibrium Floquet Chern insulator in an organic conductor $alpha$-(BEDT-TTF)$_2$I$_3$, which was recently predicted using the Floquet theory. By
We investigate the effect of strong electronic correlation on the massless Dirac fermion system, $alpha$-(BEDT-TTF)$_2$I$_3$, under pressure. In this organic salt, one can control the electronic correlation by changing pressure and access the quantum
(BEDT-TFF)$_2$I$_3$ charge transfer salts are reported to show superconductivity and pressure induced quasi two-dimensional Dirac cones at the Fermi level. By performing state of the art ab initio calculations in the framework of density functional t