ﻻ يوجد ملخص باللغة العربية
We theoretically investigate possible photoinduced topological phase transitions in the organic salt $alpha$-(BEDT-TTF)$_2$I$_3$, which possesses a pair of inclined massless Dirac-cone bands between the conduction and valence bands under uniaxial pressure. The Floquet analyses of a driven tight-binding model for this material reveal rich photoinduced variations of band structures, Chern numbers, and Hall conductivities under irradiation with elliptically polarized light. The obtained phase diagrams contain a variety of nonequilibrium steady phases, e.g., the Floquet Chern insulator, Floquet semimetal, and Floquet normal insulator phases. This work widens a scope of target materials for research on photoinduced topological phase transitions and contributes to development of research on the optical manipulations of electronic states in matters.
Prolonged experimental attempts to find magnetic monopoles (i.e., elementary particles with an isolated magnetic charge in three dimensions) have not yet been successful despite intensive efforts made since Diracs proposal in 1931. Particle physicist
The emergence of photo-induced topological phases and their phase transitions are theoretically predicted in organic salt $alpha$-(BEDT-TTF)$_2$I$_3$, which possesses inclined Dirac cones in its band structure. By analyzing a photo-driven tight-bindi
We theoretically study the real-time dynamics of the photoinduced topological phase transition to a nonequilibrium Floquet Chern insulator in an organic conductor $alpha$-(BEDT-TTF)$_2$I$_3$, which was recently predicted using the Floquet theory. By
We investigate the effect of strong electronic correlation on the massless Dirac fermion system, $alpha$-(BEDT-TTF)$_2$I$_3$, under pressure. In this organic salt, one can control the electronic correlation by changing pressure and access the quantum
The two-dimensional organic conductor $alpha$-(BEDT-TTF)$_2$I$_3$ undergoes a metal-insulator transition at $T_{rm CO}=135$ K due to electronic charge ordering. We have conducted time-resolved investigations of its electronic properties in order to e