ترغب بنشر مسار تعليمي؟ اضغط هنا

Matrix quantum mechanics plays various important roles in theoretical physics, such as a holographic description of quantum black holes. Understanding quantum black holes and the role of entanglement in a holographic setup is of paramount importance for the development of better quantum algorithms (quantum error correction codes) and for the realization of a quantum theory of gravity. Quantum computing and deep learning offer us potentially useful approaches to study the dynamics of matrix quantum mechanics. In this paper we perform a systematic survey for quantum computing and deep learning approaches to matrix quantum mechanics, comparing them to Lattice Monte Carlo simulations. In particular, we test the performance of each method by calculating the low-energy spectrum.
321 - Xizhi Han 2020
A numerical bootstrap method is proposed to provide rigorous and nontrivial bounds in general quantum many-body systems with locality. In particular, lower bounds on ground state energies of local lattice systems are obtained by imposing positivity c onstraints on certain operator expectation values. Complemented with variational upper bounds, ground state observables are constrained to be within a narrow range. The method is demonstrated with the Hubbard model in one and two dimensions, and bounds on ground state double occupancy and magnetization are discussed.
Large $N$ matrix quantum mechanics is central to holographic duality but not solvable in the most interesting cases. We show that the spectrum and simple expectation values in these theories can be obtained numerically via a `bootstrap methodology. I n this approach, operator expectation values are related by symmetries -- such as time translation and $SU(N)$ gauge invariance -- and then bounded with certain positivity constraints. We first demonstrate how this method efficiently solves the conventional quantum anharmonic oscillator. We then reproduce the known solution of large $N$ single matrix quantum mechanics. Finally, we present new results on the ground state of large $N$ two matrix quantum mechanics.
Kitaevs quantum double models in 2D provide some of the most commonly studied examples of topological quantum order. In particular, the ground space is thought to yield a quantum error-correcting code. We offer an explicit proof that this is the case for arbitrary finite groups. Actually a stronger claim is shown: any two states with zero energy density in some contractible region must have the same reduced state in that region. Alternatively, the local properties of a gauge-invariant state are fully determined by specifying that its holonomies in the region are trivial. We contrast this result with the fact that local properties of gauge-invariant states are not generally determined by specifying all of their non-Abelian fluxes -- that is, the Wilson loops of lattice gauge theory do not form a complete commuting set of observables. We also note that the methods developed by P. Naaijkens (PhD thesis, 2012) under a different context can be adapted to provide another proof of the error correcting property of Kitaevs model. Finally, we compute the topological entanglement entropy in Kitaevs model, and show, contrary to previous claims in the literature, that it does not depend on whether the log dim R term is included in the definition of entanglement entropy.
We employ machine learning techniques to provide accurate variational wavefunctions for matrix quantum mechanics, with multiple bosonic and fermionic matrices. Variational quantum Monte Carlo is implemented with deep generative flows to search for ga uge invariant low energy states. The ground state, and also long-lived metastable states, of an $mathrm{SU}(N)$ matrix quantum mechanics with three bosonic matrices, as well as its supersymmetric `mini-BMN extension, are studied as a function of coupling and $N$. Known semiclassical fuzzy sphere states are recovered, and the collapse of these geometries in more strongly quantum regimes is probed using the variational wavefunction. We then describe a factorization of the quantum mechanical Hilbert space that corresponds to a spatial partition of the emergent geometry. Under this partition, the fuzzy sphere states show a boundary-law entanglement entropy in the large $N$ limit.
Operator growth in spatially local quantum many-body systems defines a scrambling velocity. We prove that this scrambling velocity bounds the state dependence of the out-of-time-ordered correlator in local lattice models. We verify this bound in simu lations of the thermal mixed-field Ising spin chain. For scrambling operators, the butterfly velocity shows a crossover from a microscopic high temperature value to a distinct value at temperatures below the energy gap.
We introduce a framework to study the emergence of time and causal structure in quantum many-body systems. In doing so, we consider quantum states which encode spacetime dynamics, and develop information theoretic tools to extract the causal relation ships between putative spacetime subsystems. Our analysis reveals a quantum generalization of the thermodynamic arrow of time and begins to explore the roles of entanglement, scrambling and quantum error correction in the emergence of spacetime. For instance, exotic causal relationships can arise due to dynamically induced quantum error correction in spacetime: there can exist a spatial region in the past which does not causally influence any small spatial regions in the future, but yet it causally influences the union of several small spatial regions in the future. We provide examples of quantum causal influence in Hamiltonian evolution, quantum error correction codes, quantum teleportation, holographic tensor networks, the final state projection model of black holes, and many other systems. We find that the quantum causal influence provides a unifying perspective on spacetime correlations in these seemingly distinct settings. In addition, we prove a variety of general structural results and discuss the relation of quantum causal influence to spacetime quantum entropies.
We prove an upper bound on the diffusivity of a general local and translation invariant quantum Markovian spin system: $D leq D_0 + left(alpha , v_text{LR} tau + beta , xi right) v_text{C}$. Here $v_text{LR}$ is the Lieb-Robinson velocity, $v_text{C} $ is a velocity defined by the current operator, $tau$ is the decoherence time, $xi$ is the range of interactions, $D_0$ is a microscopically determined diffusivity and $alpha$ and $beta$ are precisely defined dimensionless coefficients. The bound constrains quantum transport by quantities that can either be obtained from the microscopic interactions ($D_0, v_text{LR}, v_text{C},xi$) or else determined from independent local non-transport measurements ($tau,alpha,beta$). We illustrate the general result with the case of a spin half XXZ chain with on-site dephasing. Our result generalizes the Lieb-Robinson bound to constrain the sub-ballistic diffusion of conserved densities in a dissipative setting.
104 - Xizhi Han , Biao Wu 2015
The mean-field dynamics of a Bose gas is shown to break down at time $tau_h = (c_1/gamma) ln N$ where $gamma$ is the Lyapunov exponent of the mean-field theory, $N$ is the number of bosons, and $c_1$ is a system-dependent constant. The breakdown time $tau_h$ is essentially the Ehrenfest time that characterizes the breakdown of the correspondence between classical and quantum dynamics. This breakdown can be well described by the quantum fidelity defined for reduced density matrices. Our results are obtained with the formalism in particle-number phase space and are illustrated with a triple-well model. The logarithmic quantum-classical correspondence time may be verified experimentally with Bose-Einstein condensates.
192 - Xizhi Han , Biao Wu 2014
We construct a complete set of Wannier functions which are localized at both given positions and momenta. This allows us to introduce the quantum phase space, onto which a quantum pure state can be mapped unitarily. Using its probability distribution in quantum phase space, we define an entropy for a quantum pure state. We prove an inequality regarding the long time behavior of our entropys fluctuation. For a typical initial state, this inequality indicates that our entropy can relax dynamically to a maximized value and stay there most of time with small fluctuations. This result echoes the quantum H-theorem proved by von Neumann in [Zeitschrift fur Physik {bf 57}, 30 (1929)]. Our entropy is different from the standard von Neumann entropy, which is always zero for quantum pure states. According to our definition, a system always has bigger entropy than its subsystem even when the system is described by a pure state. As the construction of the Wannier basis can be implemented numerically, the dynamical evolution of our entropy is illustrated with an example.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا