ﻻ يوجد ملخص باللغة العربية
We introduce a framework to study the emergence of time and causal structure in quantum many-body systems. In doing so, we consider quantum states which encode spacetime dynamics, and develop information theoretic tools to extract the causal relationships between putative spacetime subsystems. Our analysis reveals a quantum generalization of the thermodynamic arrow of time and begins to explore the roles of entanglement, scrambling and quantum error correction in the emergence of spacetime. For instance, exotic causal relationships can arise due to dynamically induced quantum error correction in spacetime: there can exist a spatial region in the past which does not causally influence any small spatial regions in the future, but yet it causally influences the union of several small spatial regions in the future. We provide examples of quantum causal influence in Hamiltonian evolution, quantum error correction codes, quantum teleportation, holographic tensor networks, the final state projection model of black holes, and many other systems. We find that the quantum causal influence provides a unifying perspective on spacetime correlations in these seemingly distinct settings. In addition, we prove a variety of general structural results and discuss the relation of quantum causal influence to spacetime quantum entropies.
We study random walks on ensembles of a specific class of random multigraphs which provide an effective graph ensemble for the causal dynamical triangulation (CDT) model of quantum gravity. In particular, we investigate the spectral dimension of the
In this letter we show that Quantum Vacuum Friction (QVF) should play an important role in neutron star evolution. Taking into account this effect we show that magnetars could be understood as a natural evolution of standard pulsars. For the Crab pul
Within the asymptotic safety scenario for gravity various conceptual issues related to the scale dependence of the metric are analyzed. The running effective field equations implied by the effective average action of Quantum Einstein Gravity (QEG) an
Computational complexity is a new quantum information concept that may play an important role in holography and in understanding the physics of the black hole interior. We consider quantum computational complexity for $n$ qubits using Nielsens geomet
An approach to study a generalization of the classical-quantum transition for general systems is proposed. In order to develop the idea, a deformation of the ladder operators algebra is proposed that contains a realization of the quantum group $SU(2)