ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Many-body Bootstrap

322   0   0.0 ( 0 )
 نشر من قبل Xizhi Han
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Xizhi Han




اسأل ChatGPT حول البحث

A numerical bootstrap method is proposed to provide rigorous and nontrivial bounds in general quantum many-body systems with locality. In particular, lower bounds on ground state energies of local lattice systems are obtained by imposing positivity constraints on certain operator expectation values. Complemented with variational upper bounds, ground state observables are constrained to be within a narrow range. The method is demonstrated with the Hubbard model in one and two dimensions, and bounds on ground state double occupancy and magnetization are discussed.



قيم البحث

اقرأ أيضاً

This review paper describes the basic concept and technical details of sparse modeling and its applications to quantum many-body problems. Sparse modeling refers to methodologies for finding a small number of relevant parameters that well explain a g iven dataset. This concept reminds us physics, where the goal is to find a small number of physical laws that are hidden behind complicated phenomena. Sparse modeling extends the target of physics from natural phenomena to data, and may be interpreted as physics for data. The first half of this review introduces sparse modeling for physicists. It is assumed that readers have physics background but no expertise in data science. The second half reviews applications. Matsubara Greens function, which plays a central role in descriptions of correlated systems, has been found to be sparse, meaning that it contains little information. This leads to (i) a new method for solving the ill-conditioned inverse problem for analytical continuation, and (ii) a highly compact representation of Matsubara Greens function, which enables efficient calculations for quantum many-body systems.
111 - Jie Ren , Chenguang Liang , 2021
A quantum many-body scar system usually contains a special non-thermal subspace (approximately) decoupled from the rest of the Hilbert space. In this work, we propose a general structure called deformed symmetric spaces for the decoupled subspaces ho sting quantum many-body scars, which are irreducible sectors of simple Lie groups transformed by matrix-product operators (or projected entangled pair operators), of which the entanglement entropies are proved to obey sub-volume-law scaling and thus violate the eigenstate thermalization hypothesis. A deformed symmetric space, in general, is required to have at least a U(1) sub-Lie-group symmetry to allow coherent periodic dynamics from certain low-entangled initial states. We enumerate several possible deforming transformations based on the sub-group symmetry requirement and recover many existing models whose scar states are not connected by symmetry. In particular, a two-dimensional scar model is proposed, which hosts a periodic dynamical trajectory on which all states are topologically ordered.
We study a kinetically constrained pair hopping model that arises within a Landau level in the quantum Hall effect. At filling $ u = 1/3$, the model exactly maps onto the so-called PXP model, a constrained model for the Rydberg atom chain that is num erically known to exhibit ETH-violating states in the middle of the spectrum or quantum many-body scars. Indeed, particular charge density wave configurations exhibit the same revivals seen in the PXP model. We generalize the mapping to fillings factors $ u = p/(2p+1)$, and show that the model is equivalent to non-integrable spin-chains within particular constrained Krylov Hilbert spaces. These lead to new examples of quantum many-body scars which manifest as revivals and slow thermalization of particular charge density wave states. Finally, we investigate the stability of the quantum scars under certain Hamiltonian perturbations motivated by the fractional quantum Hall physics.
We construct a set of exact, highly excited eigenstates for a nonintegrable spin-1/2 model in one dimension that is relevant to experiments on Rydberg atoms in the antiblockade regime. These states provide a new solvable example of quantum many-body scars: their sub-volume-law entanglement and equal energy spacing allow for infinitely long-lived coherent oscillations of local observables following a suitable quantum quench. While previous works on scars have interpreted such oscillations in terms of the precession of an emergent macroscopic SU(2) spin, the present model evades this description due to a set of emergent kinetic constraints in the scarred eigenstates that are absent in the underlying Hamiltonian. We also analyze the set of initial states that give rise to periodic revivals, which persist as approximate revivals on a finite timescale when the underlying model is perturbed. Remarkably, a subset of these initial states coincides with the family of area-law entangled Rokhsar-Kivelson states shown by Lesanovsky to be exact ground states for a class of models relevant to experiments on Rydberg-blockaded atomic lattices.
We study the spin-1 XY model on a hypercubic lattice in $d$ dimensions and show that this well-known nonintegrable model hosts an extensive set of anomalous finite-energy-density eigenstates with remarkable properties. Namely, they exhibit subextensi ve entanglement entropy and spatiotemporal long-range order, both believed to be impossible in typical highly excited eigenstates of nonintegrable quantum many-body systems. While generic initial states are expected to thermalize, we show analytically that the eigenstates we construct lead to weak ergodicity breaking in the form of persistent oscillations of local observables following certain quantum quenches--in other words, these eigenstates provide an archetypal example of so-called quantum many-body scars. This work opens the door to the analytical study of the microscopic origin, dynamical signatures, and stability of such phenomena.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا