ترغب بنشر مسار تعليمي؟ اضغط هنا

State estimation is a data processing algorithm for converting redundant meter measurements and other information into an estimate of the state of a power system. Relying heavily on meter measurements, state estimation has proven to be vulnerable to cyber attacks. In this paper, a novel targeted false data injection attack (FDIA) model against AC state estimation is proposed. Leveraging on the intrinsic load dynamics in ambient conditions and important properties of the Ornstein-Uhlenbeck process, we, from the viewpoint of intruders, design an algorithm to extract power network parameters purely from PMU data, which are further used to construct the FDIA vector. Requiring no network parameters and relying only on limited phasor measurement unit (PMU) data, the proposed FDIA model can target specific states and launch large deviation attacks. Sufficient conditions for the proposed FDIA model are also developed. Various attack vectors and attacking regions are studied in the IEEE 39-bus system, showing that the proposed FDIA method can successfully bypass the bad data detection and launch targeted large deviation attacks with very high probabilities.
In this paper, a phasor measurement unit (PMU)-based wide-area damping control method is proposed to damp the interarea oscillations that threaten the modern power system stability and security. Utilizing the synchronized PMU data, the proposed almos t model-free approach can achieve an effective damping for the selected modes using a minimum number of synchronous generators. Simulations are performed to show the validity of the proposed wide-area damping control scheme.
A novel false data injection attack (FDIA) model against DC state estimation is proposed, which requires no network parameters and exploits only limited phasor measurement unit (PMU) data. The proposed FDIA model can target specific states and launch large deviation attacks using estimated line parameters. Sufficient conditions for the proposed method are also presented. Different attack vectors are studied in the IEEE 39-bus system, showing that the proposed FDIA method can successfully bypass the bad data detection (BDD) with high success rates of up to 95.3%.
In this paper, a novel model-free wide-area damping control (WADC) method is proposed, which can achieve full decoupling of modes and damp multiple critical inter-area oscillations simultaneously using grid-connected voltage source converters (VSCs). The proposed method is purely measurement based and requires no knowledge of the network topology and the dynamic model parameters. Hence, the designed controller using VSCs can update the control signals online as the system operating condition varies. Numerical studies in the modified IEEE 68-bus system with grid-connected VSCs show that the proposed method can estimate the system dynamic model accurately and can damp inter-area oscillations effectively under different working conditions and network topologies.
This paper proposes a novel online measurement-based Wide-Area Voltage Control (WAVC) method using Phasor Measurement Unit (PMU) data in power systems with Flexible AC Transmission System (FACTS) devices. As opposed to previous WAVC methods, the prop osed WAVC does not require any model knowledge or the participation of all buses and considers both active and reactive power perturbations. Specifically, the proposed WAVC method exploits the regression theorem of the Ornstein-Uhlenbeck process to estimate the sensitivity matrices through PMU data online, which are further used to design and apply the voltage regulation by updating the reference points of FACTS devices. Numerical results on the IEEE 39- Bus and IEEE 68-Bus systems demonstrate that the proposed model-free WAVC can provide effective voltage control in various network topologies, different combinations of voltage-controlled and voltage-uncontrolled buses, under measurement noise, and in case of missing PMUs. Particularly, the proposed WAVC algorithm may outperform the model-based WAVC when an undetected topology change happens.
The increasing uncertainty level caused by growing renewable energy sources (RES) and aging transmission networks poses a great challenge in the assessment of total transfer capability (TTC) and available transfer capability (ATC). In this paper, a n ovel data-driven sparse polynomial chaos expansion (DDSPCE) method is proposed for estimating the probabilistic characteristics (e.g., mean, variance, probability distribution) of probabilistic TTC (PTTC). Specifically, the proposed method, requiring no pre-assumed probabilistic distributions of random inputs, exploits data sets directly in estimating the PTTC. Besides, a sparse scheme is integrated to improve the computational efficiency. Numerical studies on the modified IEEE 118-bus system demonstrate that the proposed DDSPCE method can achieve accurate estimation for the probabilistic characteristics of PTTC with a high efficiency. Moreover, numerical results reveal the great significance of incorporating discrete random inputs in PTTC and ATC assessment, which nevertheless was not given sufficient attention.
In this paper, a wide-area measurement system (WAMS)-based method is proposed to estimate the system state matrix for AC system with integrated voltage source converters (VSCs) and identify the electromechanical modes. The proposed method is purely m odel-free, requiring no knowledge of accurate network topology and system parameters. Numerical studies in the IEEE 68-bus system with integrated VSCs show that the proposed measurementbased method can accurately identify the electromechanical modes and estimate the damping ratios, the mode shapes, and the participation factors. The work may serve as a basis for developing WAMS-based damping control using VSCs in the future.
This paper presents a new phasor measurement unit (PMU)-based wide-area damping control (WADC) method to suppress the critical inter-area modes of large-scale power systems. Modal participation factors, estimated by a practically model-free system id entification approach, are used to select the most suitable synchronous generators for control through the proposed WADC algorithm. It is shown that multiple inter-area modes can be sufficiently damped by the proposed approach without affecting the rest of the modes, while only a few machines are needed to perform the control. The proposed technique is applied to the IEEE 68-bus and the IEEE 145-bus systems, including the test cases with PMU measurement noise and with missing PMUs. The simulation results clearly demonstrate the good adaptivity of the control strategy subjected to network model changes, its effective damping performance comparing to power system stabilizers (PSSs), and its great potential for near real-time implementation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا