ﻻ يوجد ملخص باللغة العربية
The increasing uncertainty level caused by growing renewable energy sources (RES) and aging transmission networks poses a great challenge in the assessment of total transfer capability (TTC) and available transfer capability (ATC). In this paper, a novel data-driven sparse polynomial chaos expansion (DDSPCE) method is proposed for estimating the probabilistic characteristics (e.g., mean, variance, probability distribution) of probabilistic TTC (PTTC). Specifically, the proposed method, requiring no pre-assumed probabilistic distributions of random inputs, exploits data sets directly in estimating the PTTC. Besides, a sparse scheme is integrated to improve the computational efficiency. Numerical studies on the modified IEEE 118-bus system demonstrate that the proposed DDSPCE method can achieve accurate estimation for the probabilistic characteristics of PTTC with a high efficiency. Moreover, numerical results reveal the great significance of incorporating discrete random inputs in PTTC and ATC assessment, which nevertheless was not given sufficient attention.
Polynomial chaos expansions (PCEs) have been used in many real-world engineering applications to quantify how the uncertainty of an output is propagated from inputs. PCEs for models with independent inputs have been extensively explored in the litera
The surrogate model-based uncertainty quantification method has drawn a lot of attention in recent years. Both the polynomial chaos expansion (PCE) and the deep learning (DL) are powerful methods for building a surrogate model. However, the PCE needs
Uncertainties exist in both physics-based and data-driven models. Variance-based sensitivity analysis characterizes how the variance of a model output is propagated from the model inputs. The Sobol index is one of the most widely used sensitivity ind
In this paper, we investigate conventional communication-based chaotic waveforms in the context of wireless power transfer (WPT). Particularly, we present a differential chaos shift keying (DCSK)-based WPT architecture, that employs an analog correla
In this work, we investigate differential chaos shift keying (DCSK), a communication-based waveform, in the context of wireless power transfer (WPT). Particularly, we present a DCSK-based WPT architecture, that employs an analog correlator at the rec