ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement-Based Estimation of System State Matrix for AC Power Systems with Integrated VSCs

116   0   0.0 ( 0 )
 نشر من قبل Jinpeng Guo
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, a wide-area measurement system (WAMS)-based method is proposed to estimate the system state matrix for AC system with integrated voltage source converters (VSCs) and identify the electromechanical modes. The proposed method is purely model-free, requiring no knowledge of accurate network topology and system parameters. Numerical studies in the IEEE 68-bus system with integrated VSCs show that the proposed measurementbased method can accurately identify the electromechanical modes and estimate the damping ratios, the mode shapes, and the participation factors. The work may serve as a basis for developing WAMS-based damping control using VSCs in the future.



قيم البحث

اقرأ أيضاً

Power system state estimation is heavily subjected to measurement error, which comes from the noise of measuring instruments, communication noise, and some unclear randomness. Traditional weighted least square (WLS), as the most universal state estim ation method, attempts to minimize the residual between measurements and the estimation of measured variables, but it is unable to handle the measurement error. To solve this problem, based on random matrix theory, this paper proposes a data-driven approach to clean measurement error in matrix-level. Our method significantly reduces the negative effect of measurement error, and conducts a two-stage state estimation scheme combined with WLS. In this method, a Hermitian matrix is constructed to establish an invertible relationship between the eigenvalues of measurements and their covariance matrix. Random matrix tools, combined with an optimization scheme, are used to clean measurement error by shrinking the eigenvalues of the covariance matrix. With great robustness and generality, our approach is particularly suitable for large interconnected power grids. Our method has been numerically evaluated using different testing systems, multiple models of measured noise and matrix size ratios.
Existing coordinated cyber-attack detection methods have low detection accuracy and efficiency and poor generalization ability due to difficulties dealing with unbalanced attack data samples, high data dimensionality, and noisy data sets. This paper proposes a model for cyber and physical data fusion using a data link for detecting attacks on a Cyber-Physical Power System (CPPS). Two-step principal component analysis (PCA) is used for classifying the systems operating status. An adaptive synthetic sampling algorithm is used to reduce the imbalance in the categories samples. The loss function is improved according to the feature intensity difference of the attack event, and an integrated classifier is established using a classification algorithm based on the cost-sensitive gradient boosting decision tree (CS-GBDT). The simulation results show that the proposed method provides higher accuracy, recall, and F-Score than comparable algorithms.
The integration of renewables into electrical grids calls for the development of tailored control schemes which in turn require reliable grid models. In many cases, the grid topology is known but the actual parameters are not exactly known. This pape r proposes a new approach for online parameter estimation in power systems based on optimal experimental design using multiple measurement snapshots. In contrast to conventional methods, our method computes optimal excitations extracting the maximum information in each estimation step to accelerate convergence. The performance of the proposed method is illustrated on a case study.
In order to balance the interests of integrated energy operator (IEO) and users, a novel Stackelberg game-based optimization framework is proposed for the optimal scheduling of integrated demand response (IDR)-enabled integrated energy systems with u ncertain renewable generations, where the IEO acts as the leader who pursues the maximization of his profits by setting energy prices, while the users are the follower who adjusts energy consumption plans to minimize their energy costs. Taking into account the inherent uncertainty of renewable generations, the probabilistic spinning reserve is written in the form of a chance constraint; in addition, a district heating network model is built considering the characteristics of time delay and thermal attenuation by fully exploiting its potential, and the flexible thermal comfort requirements of users in IDR are considered by introducing a predicted mean vote (PMV) index. To solve the raised model, sequence operation theory is introduced to convert the chance constraint into its deterministic equivalent form, and thereby, the leader-follower Stackelberg game is tackled into a mixed-integer quadratic programming formulation through Karush-Kuhn-Tucker optimality conditions and is finally solved by the CPLEX optimizer. The results of two case studies demonstrate that the proposed Stackelberg game-based approach manages to achieve the Stackelberg equilibrium between IEO and users by the coordination of renewable generations and IDR. Furthermore, the study on a real integrated energy system in China verifies the applicability of the proposed approach for real-world applications.
329 - Faycal Znidi , 2021
Coherent groups of generators, i.e., machines with perfectly correlated rotor angles, play an important role in power system stability analysis. This paper introduces a real-time methodology based on hierarchical clustering techniques for discovering the degree of coherency among generators using the synchronization coefficient and the correlation coefficient of the generators rotor angle as the coherency index. Furthermore, the Power Transient Stability Indices (PTSI) were employed to examine the versatile response of the power system. The method uses power systems transients Stability indices, i.e., power Connectivity Factor (CF) index which presents coherently strong generators within the groups, the power Separation Factor (SF) index which unveils to the extent that the generators in different groups tend to swing against the other groups in the event of a disturbance, and the overall system separation index which demonstrates the overall system separation status (CF/SF). The approach is assessed on an IEEE-39 test system with a fully dynamic model. The simulation results presented in this paper demonstrate the efficiency of the proposed approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا