ترغب بنشر مسار تعليمي؟ اضغط هنا

In order to protect the intellectual property (IP) of deep neural networks (DNNs), many existing DNN watermarking techniques either embed watermarks directly into the DNN parameters or insert backdoor watermarks by fine-tuning the DNN parameters, whi ch, however, cannot resist against various attack methods that remove watermarks by altering DNN parameters. In this paper, we bypass such attacks by introducing a structural watermarking scheme that utilizes channel pruning to embed the watermark into the host DNN architecture instead of crafting the DNN parameters. To be specific, during watermark embedding, we prune the internal channels of the host DNN with the channel pruning rates controlled by the watermark. During watermark extraction, the watermark is retrieved by identifying the channel pruning rates from the architecture of the target DNN model. Due to the superiority of pruning mechanism, the performance of the DNN model on its original task is reserved during watermark embedding. Experimental results have shown that, the proposed work enables the embedded watermark to be reliably recovered and provides a high watermark capacity, without sacrificing the usability of the DNN model. It is also demonstrated that the work is robust against common transforms and attacks designed for conventional watermarking approaches.
Designing an effective loss function plays a crucial role in training deep recommender systems. Most existing works often leverage a predefined and fixed loss function that could lead to suboptimal recommendation quality and training efficiency. Some recent efforts rely on exhaustively or manually searched weights to fuse a group of candidate loss functions, which is exceptionally costly in computation and time. They also neglect the various convergence behaviors of different data examples. In this work, we propose an AutoLoss framework that can automatically and adaptively search for the appropriate loss function from a set of candidates. To be specific, we develop a novel controller network, which can dynamically adjust the loss probabilities in a differentiable manner. Unlike existing algorithms, the proposed controller can adaptively generate the loss probabilities for different data examples according to their varied convergence behaviors. Such design improves the models generalizability and transferability between deep recommender systems and datasets. We evaluate the proposed framework on two benchmark datasets. The results show that AutoLoss outperforms representative baselines. Further experiments have been conducted to deepen our understandings of AutoLoss, including its transferability, components and training efficiency.
Graph self-supervised learning has gained increasing attention due to its capacity to learn expressive node representations. Many pretext tasks, or loss functions have been designed from distinct perspectives. However, we observe that different prete xt tasks affect downstream tasks differently cross datasets, which suggests that searching pretext tasks is crucial for graph self-supervised learning. Different from existing works focusing on designing single pretext tasks, this work aims to investigate how to automatically leverage multiple pretext tasks effectively. Nevertheless, evaluating representations derived from multiple pretext tasks without direct access to ground truth labels makes this problem challenging. To address this obstacle, we make use of a key principle of many real-world graphs, i.e., homophily, or the principle that ``like attracts like, as the guidance to effectively search various self-supervised pretext tasks. We provide theoretical understanding and empirical evidence to justify the flexibility of homophily in this search task. Then we propose the AutoSSL framework which can automatically search over combinations of various self-supervised tasks. By evaluating the framework on 7 real-world datasets, our experimental results show that AutoSSL can significantly boost the performance on downstream tasks including node clustering and node classification compared with training under individual tasks. Code will be released at https://github.com/ChandlerBang/AutoSSL.
Many learning tasks require us to deal with graph data which contains rich relational information among elements, leading increasing graph neural network (GNN) models to be deployed in industrial products for improving the quality of service. However , they also raise challenges to model authentication. It is necessary to protect the ownership of the GNN models, which motivates us to present a watermarking method to GNN models in this paper. In the proposed method, an Erdos-Renyi (ER) random graph with random node feature vectors and labels is randomly generated as a trigger to train the GNN to be protected together with the normal samples. During model training, the secret watermark is embedded into the label predictions of the ER graph nodes. During model verification, by activating a marked GNN with the trigger ER graph, the watermark can be reconstructed from the output to verify the ownership. Since the ER graph was randomly generated, by feeding it to a non-marked GNN, the label predictions of the graph nodes are random, resulting in a low false alarm rate (of the proposed work). Experimental results have also shown that, the performance of a marked GNN on its original task will not be impaired. Moreover, it is robust against model compression and fine-tuning, which has shown the superiority and applicability.
Practical large-scale recommender systems usually contain thousands of feature fields from users, items, contextual information, and their interactions. Most of them empirically allocate a unified dimension to all feature fields, which is memory inef ficient. Thus it is highly desired to assign different embedding dimensions to different feature fields according to their importance and predictability. Due to the large amounts of feature fields and the nuanced relationship between embedding dimensions with feature distributions and neural network architectures, manually allocating embedding dimensions in practical recommender systems can be very difficult. To this end, we propose an AutoML based framework (AutoDim) in this paper, which can automatically select dimensions for different feature fields in a data-driven fashion. Specifically, we first proposed an end-to-end differentiable framework that can calculate the weights over various dimensions for feature fields in a soft and continuous manner with an AutoML based optimization algorithm; then we derive a hard and discrete embedding component architecture according to the maximal weights and retrain the whole recommender framework. We conduct extensive experiments on benchmark datasets to validate the effectiveness of the AutoDim framework.
Recently, recommender systems that aim to suggest personalized lists of items for users to interact with online have drawn a lot of attention. In fact, many of these state-of-the-art techniques have been deep learning based. Recent studies have shown that these deep learning models (in particular for recommendation systems) are vulnerable to attacks, such as data poisoning, which generates users to promote a selected set of items. However, more recently, defense strategies have been developed to detect these generated users with fake profiles. Thus, advanced injection attacks of creating more `realistic user profiles to promote a set of items is still a key challenge in the domain of deep learning based recommender systems. In this work, we present our framework CopyAttack, which is a reinforcement learning based black-box attack method that harnesses real users from a source domain by copying their profiles into the target domain with the goal of promoting a subset of items. CopyAttack is constructed to both efficiently and effectively learn policy gradient networks that first select, and then further refine/craft, user profiles from the source domain to ultimately copy into the target domain. CopyAttacks goal is to maximize the hit ratio of the targeted items in the Top-$k$ recommendation list of the users in the target domain. We have conducted experiments on two real-world datasets and have empirically verified the effectiveness of our proposed framework and furthermore performed a thorough model analysis.
Online recommendation and advertising are two major income channels for online recommendation platforms (e.g. e-commerce and news feed site). However, most platforms optimize recommending and advertising strategies by different teams separately via d ifferent techniques, which may lead to suboptimal overall performances. To this end, in this paper, we propose a novel two-level reinforcement learning framework to jointly optimize the recommending and advertising strategies, where the first level generates a list of recommendations to optimize user experience in the long run; then the second level inserts ads into the recommendation list that can balance the immediate advertising revenue from advertisers and the negative influence of ads on long-term user experience. To be specific, the first level tackles high combinatorial action space problem that selects a subset items from the large item space; while the second level determines three internally related tasks, i.e., (i) whether to insert an ad, and if yes, (ii) the optimal ad and (iii) the optimal location to insert. The experimental results based on real-world data demonstrate the effectiveness of the proposed framework. We have released the implementation code to ease reproductivity.
Deep learning based recommender systems (DLRSs) often have embedding layers, which are utilized to lessen the dimensionality of categorical variables (e.g. user/item identifiers) and meaningfully transform them in the low-dimensional space. The major ity of existing DLRSs empirically pre-define a fixed and unified dimension for all user/item embeddings. It is evident from recent researches that different embedding sizes are highly desired for different users/items according to their popularity. However, manually selecting embedding sizes in recommender systems can be very challenging due to the large number of users/items and the dynamic nature of their popularity. Thus, in this paper, we propose an AutoML based end-to-end framework (AutoEmb), which can enable various embedding dimensions according to the popularity in an automated and dynamic manner. To be specific, we first enhance a typical DLRS to allow various embedding dimensions; then we propose an end-to-end differentiable framework that can automatically select different embedding dimensions according to user/item popularity; finally we propose an AutoML based optimization algorithm in a streaming recommendation setting. The experimental results based on widely used benchmark datasets demonstrate the effectiveness of the AutoEmb framework.
112 - Xiangyu Zhao , Jiliang Tang 2020
Crime prediction plays an impactful role in enhancing public security and sustainable development of urban. With recent advances in data collection and integration technologies, a large amount of urban data with rich crime-related information and fin e-grained spatio-temporal logs has been recorded. Such helpful information can boost our understandings about the temporal evolution and spatial factors of urban crimes and can enhance accurate crime prediction. In this paper, we perform crime prediction exploiting the cross-type and spatio-temporal correlations of urban crimes. In particular, we verify the existence of correlations among different types of crime from temporal and spatial perspectives, and propose a coherent framework to mathematically model these correlations for crime prediction. The extensive experimental results on real-world data validate the effectiveness of the proposed framework. Further experiments have been conducted to understand the importance of different correlations in crime prediction.
With the recent prevalence of Reinforcement Learning (RL), there have been tremendous interests in utilizing RL for online advertising in recommendation platforms (e.g., e-commerce and news feed sites). However, most RL-based advertising algorithms f ocus on optimizing ads revenue while ignoring the possible negative influence of ads on user experience of recommended items (products, articles and videos). Developing an optimal advertising algorithm in recommendations faces immense challenges because interpolating ads improperly or too frequently may decrease user experience, while interpolating fewer ads will reduce the advertising revenue. Thus, in this paper, we propose a novel advertising strategy for the rec/ads trade-off. To be specific, we develop an RL-based framework that can continuously update its advertising strategies and maximize reward in the long run. Given a recommendation list, we design a novel Deep Q-network architecture that can determine three internally related tasks jointly, i.e., (i) whether to interpolate an ad or not in the recommendation list, and if yes, (ii) the optimal ad and (iii) the optimal location to interpolate. The experimental results based on real-world data demonstrate the effectiveness of the proposed framework.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا